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Abstract

A description of decoder-only transformer models is presented, including a brief summary of
the impact of LayerNorm on the latent space. A background report summarising the current
state-of-the-art on language model interpretability is then conducted, focusing on how better
understanding the structure of activations could lead to better controlling language models.

This is followed by an empirical investigation into how different features are represented by
language models, using multiple methods to demonstrate similarities and differences between
the activations associated with different datasets. Previous work concerning whether Residual
Stream activations are centred about the origin is extended, providing a negative answer.

These empirical findings are complimented by an investigation into how to approximate the
feature representations of language models, using the hypothesis that features of text in GPT-2
style models are represented as directions in activation space. This presents a potential im-
provement over existing methods.

This more principled understanding of the activations of language models allows for the
improvement of new methods for controlling language models, by adding more precisely con-
structed vectors at inference time. A new method is proposed based on constructing feature
vectors from datasets of text, with a solution to account for the bias in Residual Stream ac-
tivations. Another method is presented which uses similar ideas to classify text using only
the intermediate activations of language models. Some examples of these methods in use are
demonstrated.
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Chapter 1

Introduction

1.1 Understanding Language Models

The current paradigm of deep learning has led to significant progress in a range of machine
learning tasks, from computer vision to natural language processing. However, although we
know how these systems are trained, we currently lack comprehensive tools for verifying the
behaviour of these systems [1]. The black-box nature of these systems means that we cannot
have confidence in their reliability, which is crucial if they are to be used in high-stakes scenarios
such as medicine or security.

There is a growing body of work that tries to interpret the underlying algorithms imple-
mented by machine learning algorithms [2], although this work has so far proved insufficient
for understanding the behaviour of state-of-the-art systems. This is particularly true of large
language models such as GPT-4 [3] and Palm-2 [4], where models have demonstrated a fast
increase in capabilities with little progress in understanding the algorithms learned by these
systems.

Some previous work on neural network interpretability, such as Olah et al. [5], Goh et al.
[6], and Radford et al. [7], has focused on studying the structure of their latent activations. In
particular, it was demonstrated that a range of neural network architectures often learned to
represent features of their inputs in their latent representations. In some contexts, this knowl-
edge of the structure of the activations could be exploited to better control the behaviour of
these models [8]. However, these methods and results were highly dependent on the struc-
ture of each network, and analogous investigations for transformer language models have yet
to reach the same level of sophistication as investigations into other architectures. This thesis
aims to address this gap in the literature, taking inspiration from work on other architectures
to better understand the structure of the activations of language models. It further aims to
develop new methods that improve our understanding and control of large language models,
addressing concerns about their safety and trustworthiness.

Specifically, we will perform an exploratory analysis of the activations of GPT-2 style language
models. We selected GPT-2 style models due to their architectural resemblance to more pow-
erful successors, such as GPT-3. This suggests that insights and methods gleaned from GPT-2
could be applicable to more advanced models. Open-source versions of GPT-2 small, medium,
large and XL will be investigated, using tooling provided by Nanda [9].

3



1.2. MY CONTRIBUTIONS Chapter 1. Introduction

1.2 My Contributions

The contributions of this thesis are threefold. Our findings suggest that the activations of
language models are highly structured, sharing similarities across different textual examples
which share some common feature. Different aspects of this structure are analysed in detail,
including the result that activations across all GPT-2 models, for all layers, are not centred about
the origin.

The second contribution uses this understanding of the structure of language model activa-
tions to develop new methods of forming feature vectors. This offers a new way to find
vectors which correspond to how transformers represent features of text, which could prove
useful for better controlling language models.

Indeed, the third contribution of this thesis is to use these methods of forming feature vec-
tors to extend methods for controlling language models. This involves the description and
demonstration of two new exploratory methods for manipulating and analysing language
models, which extends previous algorithms designed for language and image models.

The structure of this thesis is as follows:
Chapter 2 presents a description of decoder-only transformers, aiming to provide better

intuitions for each part of the architecture. LayerNorm is also treated in some depth, which is
often ignored in other expositions on transformers.

Chapter 3 provides a review of the literature relevant to our investigation. It will start
with a broad overview of transformer models and trustworthiness, before surveying current
progress in interpretability of neural networks and transformers. This will culminate in a review
of work in activation interpretability, presenting work which will directly inform the ensuing
investigations.

Chapter 4 presents experimental methods that can be used to obtain further empirical evi-
dence for how different inputs are processed and manipulated by transformer models. This is
followed by a series of investigations into how different datasets are processed by GPT-2 mod-
els, providing evidence that there are significant similarities in activations across inputs which
share some human-interpretable features. Further similarities and differences across activations
are investigated.

Chapter 5 briefly argues that human-interpretable features are represented as directions in
the Residual Stream of GPT-2 style models. Assuming this hypothesis leads to a new method
for developing feature vectors: directions in the Residual Stream which correspond to features
of text. Mirroring the techniques developed for generative image models by White [8], two
new techniques are developed to better understand and control language models: Feature
Classification and Activation Additions. We demonstrate some early successful applications of
these techniques.

Chapters 6 and 7 evaluate the implications and limitations of our work, suggesting avenues
for further development as well as potential applications for improving the trustworthiness of
language models.

1.3 Ethical Considerations

The following table outlines a list of legal, social, ethical and professional considerations related
to my project.

4



Chapter 1. Introduction 1.3. ETHICAL CONSIDERATIONS

Due to the theoretical nature of my project, there were few immediate ethical concerns. The
only consideration that applied was the use of elements that may cause harm to the environ-
ment, since remote GPUs were used during the project to perform inference on large language
models. Bender et al. [10] highlighted issues surrounding the carbon emissions associated with
running inference on large language models, but this will have been relatively minimal for my
own project since only single GPUs were used for relatively short periods of time, as training
was not performed.

Yes No
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells? X
Does your project involve the use of human embryos? X
Does your project involve the use of human foetal tissues / cells? X
Section 2: HUMANS
Does your project involve human participants? X
Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than from “Human
Embryos/Foetuses” i.e. Section 1)?

X

Section 4: PROTECTION OF PERSONAL DATA
Does your project involve personal data collection and/or processing? X
Does it involve the collection and/or processing of sensitive personal data
(e.g. health, sexual lifestyle, ethnicity, political opinion, religious or philo-
sophical conviction)?

X

Does it involve processing of genetic information? X
Does it involve tracking or observation of participants? It should be noted
that this issue is not limited to surveillance or localization data. It also ap-
plies to Wan data such as IP address, MACs, cookies etc.

X

Does your project involve further processing of previously collected personal
data (secondary use)? For example Does your project involve merging exist-
ing data sets?

X

Section 5: ANIMALS
Does your project involve animals? X
Section 6: DEVELOPING COUNTRIES
Does your project involve developing countries? X
If your project involves low and/or lower-middle income countries, are any
benefit-sharing actions planned?

X

Could the situation in the country put the individuals taking part in the
project at risk?

X

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY
Does your project involve the use of elements that may cause harm to the
environment, animals or plants?

X

Does your project deal with endangered fauna and/or flora /protected ar-
eas?

X

Does your project involve the use of elements that may cause harm to hu-
mans, including project staff?

X

5



1.3. ETHICAL CONSIDERATIONS Chapter 1. Introduction

Yes No
Does your project involve other harmful materials or equipment, e.g. high-
powered laser systems?

X

Section 8: DUAL USE
Does your project have the potential for military applications? X
Does your project have an exclusive civilian application focus? X
Will your project use or produce goods or information that will require ex-
port licenses in accordance with legislation on dual use items?

X

Does your project affect current standards in military ethics – e.g., global
ban on weapons of mass destruction, issues of proportionality, discrimina-
tion of combatants and accountability in drone and autonomous robotics
developments, incendiary or laser weapons?

X

Section 9: MISUSE
Does your project have the potential for malevolent/criminal/terrorist
abuse?

X

Does your project involve information on/or the use of biological-, chemical-
, nuclear/radiological-security sensitive materials and explosives, and means
of their delivery?

X

Does your project involve the development of technologies or the creation
of information that could have severe negative impacts on human rights
standards (e.g. privacy, stigmatization, discrimination), if misapplied?

X

Does your project have the potential for terrorist or criminal abuse e.g. in-
frastructural vulnerability studies, cybersecurity related project?

X

SECTION 10: LEGAL ISSUES
Will your project use or produce software for which there are copyright li-
censing implications?

X

Will your project use or produce goods or information for which there are
data protection, or other legal implications?

X

SECTION 11: OTHER ETHICS ISSUES
Are there any other ethics issues that should be taken into consideration? X
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Chapter 2

Transformer Background

This chapter will provide an explanation of how GPT-2 style transformers work, defining various
pieces of terminology that will be used throughout the rest of this thesis.

2.1 GPT-2 Training and Inference

Decoder-only models such as GPT-2 style models are typically trained through next token pre-
diction. This means that cross-entropy loss is applied to each token, with the correct label being
the next token in the tokenised text.

These models can hence be used autoregressively at inference time by taking the argmax of
the output associated with the final token. This corresponds to the model’s prediction of the
subsequent token. This can be repeated autoregressively to form longer passages of text.

Subsequent models such as GPT-3.5 and GPT-4 are trained using this pre-training followed
by further training through processes such as Reinforcement Learning from Human Feedback
[11]. This helps to make models more aligned with human preferences, and not just repeat the
most likely continuations of text as found in the training set. However, base models (such as all
the GPT-2 models) are only trained using pre-training.

Understanding how models were trained, and on what datasets, can be useful when trying
to understand the capabilities and failures of different models. For example, only using pre-
training means that models are particularly likely to demonstrate biases which are present in
their training data, such as anti-Muslim biases [12].

2.2 GPT-2 Transformer Architecture

There is some variety in how different transformers are implemented. For my project, I will
only consider GPT-2 style transformers. The following description draws heavily from Elhage
et al. [13].

The forward pass of GPT-2 style models are computed as follows:

• Given an input string s, use a tokeniser to split this into a tensor of tokens t ∈ Rdvocab×l,
where l is the number of tokens in t. Each token can be considered a section of the string
which the model is capable of processing.

7



2.2. GPT-2 TRANSFORMER ARCHITECTURE Chapter 2. Transformer Background

• Embed these tokens using an embedding matrix and positional encoding WE ∈ Rdmodel×dvocab:

x0 = WE · t,
where x0 ∈ Rdmodel×l, since it constitutes l vectors of dimension Rdmodel, where each vector
corresponds to a single token of t.

• For i ∈ {0, 1, . . . , n− 1}, where n is the number of layers in the transformer:

– Compute the output of the Attention Layer:

x′
i = xi +

∑
h∈Hi

h(LayerNorm(xi)),

where each h is known as an Attention Head.
– Compute the output of the MLP Layer:

xi+1 = x′
i +mi(LayerNorm(x′

i)).

– Note that both xi,x
′
i ∈ Rdmodel×l.

• Produce the final logits by applying the unembedding matrix WU ∈ Rdvocab×dmodel:

T(t) = WU · LayerNorm(xn−1),

where T(t) ∈ Rdvocab×l.

• Produce the final output probabilities by taking a softmax over the logits:

P(t) = softmax(T(t)),

where again P(t) ∈ Rdvocab×l. The final column of P (t) implicitly corresponds to the
model’s predicted probability distribution over which token follows the input string.

This process is visualised in Figure 2.1.

2.2.1 Terminology

We will define some terminology which will be used throughout the thesis. It will draw from
the terminology developed by Elhage et al. [13].

• Activations are any vectors which are computed during the forward pass of the model on
some input.

• In particular, each xi and x′
i are Residual Stream activations, or the Residual Stream tensors

at the layer i. These tensors can be described as being located in the Residual Stream.

• Each xi can be expressed as xi = (xi,1, . . . ,xi,l), where each xi,j ∈ Rdmodel corresponds to
the activations associated with the j’th token. In some contexts, these will just be referred
to as tokens.

• Individual vectors xi,j are referred to as activations of a token for the i’th layer of the
Residual Stream.

• The final activations in a layer are considered activations corresponding to the final token
at some layer l of the transformer, i.e. xi,l for some string sk.

8



Chapter 2. Transformer Background 2.2. GPT-2 TRANSFORMER ARCHITECTURE

Figure 2.1: A diagram illustrating how GPT-2 style transformers work. The string “The sky is” is
first split into three tokens, which are then embedded into the Residual Stream. The dimension of
the Residual Stream is thus 3 x dmodel. The Residual Stream then passes through nlayers transformer
blocks, before finally passing through Layer Norm and the Unembedding Layer. The dimension of
the final output is 3 x dvocab.

9



2.2. GPT-2 TRANSFORMER ARCHITECTURE Chapter 2. Transformer Background

2.2.2 Residual Stream

In GPT-2 style transformers, information can only be shared between different sections of the
transformer through the Residual Stream. The input to each Attention Layer and MLP Layer is
a LayerNormed copy of the Residual Stream, and the output of each of these layers is added
back to the Residual Stream. Eventually, the Residual Stream is unembedded to produce the
final predictions of the model.

Since information can only be passed through layers of the transformer via the Residual
Stream, Residual Stream activations are very important to understand when trying to interpret
transformers. These activations will provide the main source of our analysis in this thesis.

2.2.3 Layer Norm

As demonstrated in Figure 2.1, LayerNorm is applied to the Residual Stream every time it is used
by other parts of the transformer. Hence, it is important to understand the impact of LayerNorm
to understand how the model uses the Residual Stream. As seen above, LayerNorm is applied
before every intermediate calculation occurs in GPT-2 models. Hence, we can simplify the space
we need to consider by only considering what happens after LayerNorm has been applied.

Note that LayerNorm is applied to each Residual Stream vector in parallel. Thus, it can be
understood by considering its behaviour on each Residual Stream token individually. Hence,
throughout this section x ∈ Rdmodel is a vector corresponding to a single token in the Residual
Stream.

The equation for LayerNorm is typically defined as follows:

Definition 1. If x ∈ Rdmodel, let LayerNorm be defined as

LayerNorm(x) :=
x− E[x]√
V[x] + ϵ

· γ + β,

where

E[x] is the empirical mean over the components of x = (xi)
dmodel
i=1 ,

i.e., E[x] :=
1

dmodel

dmodel∑
i=1

xi;

V[x] is the biased empirical variance over the components of x,

i.e., V[x] :=
1

dmodel

dmodel∑
i=1

(xi − E[x])2;

γ is a diagonal matrix of dimension dmodel × dmodel,

β is a vector of dimension dmodel.

We can also define the following, which is a simplification that removes the affine map post-
normalisation.

Definition 2. If x ∈ Rdmodel, let PreLayerNorm be defined as

PreLayerNorm[x] :=
x− E[x]√
V[x] + ϵ

,

10
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Because the immediate operations following LayerNorm are always linear in GPT-2 style
transformers, we can reduce this to instead considering PreLayerNorm, by “folding” the affine
transformation after normalisation into the next operations.

Theorem 1. If f : Rn → Rm is an affine transformation, then there exists an affine transformation
g : Rn → Rm such that f(LayerNorm[x]) = g(PreLayerNorm[x]) for all x ∈ Rm

Proof. The proof is straightforward. Given

f(LayerNorm(x)) = f (PreLayerNorm(x) · γ + β) ,

we can expand this as
f(PreLayerNorm(x)) · γ + β,

since f is affine. Then, defining
g(y) := f(y) · γ + β,

we find that g is the required affine map.

Thus, we only need to consider the simplification PreLayerNorm. We will make the simpli-
fying assumption that this is approximately equivalent to normalising without the ϵ term. This
is reasonable since this term is often in the region of 10−5, and is only included for numerical
stability.

Now if we consider the image of PreLayerNorm on Rn, we have the following result.

Theorem 2. PreLayerNorm[Rd
model] corresponds to a sphere on the hyperplane orthogonal to the

unit vector 1 = (1, ..., 1) ∈ Rdmodel, centred at the origin with radius
√
dmodel.

Adapted from [14]. Given the operation x − E[x], it serves as a projection onto the orthogonal
complement of the vector 1. This is evident since, defining

p1(x) :=
⟨x,1⟩1
||1||2

,

the mapping x− p1(x) also projects onto the orthogonal complement of 1. Thus, we have:

x− E[x] = (xi −
1

dmodel

∑
j

xj)i

= x−

(
1

dmodel

∑
j

xj

)
1

= x− ⟨x,1⟩1
||1||2

= x− p1(x).

Further, discarding the factor ϵ (added typically for numerical stability and being insignifi-
cantly small), the expression for PreLayerNorm becomes:

x− E[x]√
V[x]

=
p1(x)√

E[(x− E[x])2]

11
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=
p1(x)√

1
dmodel

∑
i p1(x)

2
i

=
√

dmodel ps(p1(x)),

where ps denotes the projection onto the unit sphere.
In conclusion, we can express:

PreLayerNorm(x) =
√
dmodel ps(p1(x)),

representing a projection onto the unit sphere of the hyperplane orthogonal to 1, subsequently
scaled by dmodel.

Together, Theorems 1 and 2 provide a new way of understanding LayerNorm: it projects
all activations onto a scaled unit sphere, on some hyperplane. This can meaningfully change
the behaviour of successive functions in the transformer block, so it will need to be considered
when trying to understand transformer blocks.

Note also that intuitively, the key aspect here is the projection onto a sphere. Since we
typically operate in high dimensional vector spaces, the projection to the hyperplane typically
has little impact on the vectors (as measured by cosine similarity). Again due to Roger [14], if
the coordinates of x are expressed in some basis with the normalised 1 normalised as the first
vector in the basis, the projection p1 only changes one coordinate of x. Since dmodel is generally
in the range of 800− 12, 000 for LLMs, the projection p1 has minimal impact on the vector x.

The implication of this is that when understanding the behaviour of Attention and MLP
Layers on the Residual Stream, it is only necessary to understand their behaviour on a
sphere centred at the origin.

2.2.4 Attention Layers

Recall that an Attention Layer is the summation of multiple Attention Heads. Each head oper-
ates in parallel on copies of Residual Stream tensors x ∈ Rl×dmodel . Specifically, the Attention
Layer can be expressed as: ∑

h∈Hi

h(LayerNorm(x)).

This expression implies that to understand the behaviour of the entire Attention Layer, we only
need to consider each Attention Head in isolation.

Using the notation provided in Elhage et al. [13], consider an Attention Head h defined as
h : Rl×dmodel → Rl×dmodel . The output of this Attention Head, when acting on a Residual Stream
tensor x ∈ Rl×dmodel , can be examined by focusing on the output corresponding to the i-th
position of the Residual Stream.

h(x)i =
∑
1≤j≤i

Ah
i,j(x) ∗Wh

OV (xj),

In this context, xi is termed the destination token, as it corresponds to the token to which
the output will be added. Conversely, the other tokens are referred to as source tokens when
considering their impact on the output of the destination token.

12
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Before defining the terms in this formula thoroughly, we will provide an intuition for what
is happening here. The matrix Ah(x) ∈ Rlxl represents attention scores, where each row sums
to 1. This means that the output is constructed by weighting each Wh

OV (xj) vector by an
attention scalar. Notice how Ah and Wh

OV are independent functions, so they can be understood
separately.

Firstly unpacking Ah, given the Residual Stream tensor (after LayerNorm has been applied)
x ∈ Rl×dmodel, the unmasked attention scores are determined through the weights of the Atten-
tion Head:

I = xTWh
QKx ∈ Rl×l,

where Wh
QK ∈ Rdmodel×dmodel is a matrix.

Note a potential issue with using unmasked attention scores is that tokens should only be able
to attend to previous tokens: they cannot be allowed to use future tokens to make predictions,
since this would make predicting future tokens trivial, and prevent the network from learning
anything useful. Preventing tokens from attending to future tokens is known as masking. One
method of masking is applying a mask M ∈ Rl×l to the unmasked attention scores. This is zero
in the lower triangular values (including the diagonal) and −∞ in the upper triangular values.
The resulting attention scores are then z = I+M. This has the effect of preventing destination
tokens from attending to source tokens after the source token.

Finally, the attention pattern is determined by applying softmax, in order to ensure that the
attention scores sum to 1. We also divide by

√
dmodel, which has the impact of making the

attention scores more uniform.

zi = (xT ·Wh
QK · x+ M)i ∈ Rl

Ah(x)i = softmax
(

zi√
dmodel

)
∈ Rl

These are the attention scores given to each source token when considering the i’th token
as the destination token. Looking at all destination tokens allows this to be visualised as a
heatmap: the i’th row corresponds to the attention pattern associated with Ah(x)i, i.e. the
attention scores for the i’th destination token. An example is demonstrated in Figure 2.2.
Notice that it is lower-triangular, due to the causal mask M.

and Wh
OV ,W

h
QK ∈ Rl×dmodel are matrices.

Once the attention pattern Ah has been computed, the final output is simple to compute since
Wh

OV ∈ Rdmodel×dmodel is a matrix.
Important Points
When trying to understand Attention Heads, the most important thing to consider is that

they are in many ways similar to linear maps. Indeed, if attention scores are held fixed, they
are simply linear maps. Attention scores also involve bilinear maps, before softmax is applied.
This will be explored further in Section 5.1 when trying to better understand the structure of
activations in the Residual Stream.

Note also that Attention Layers are the only place in the transformer where information is
moved between different tokens. MLP Layers, LayerNorm, and Unembedding layers operate on
each token in the Residual Stream in parallel, and so no information is moved between tokens
in these layers.
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Figure 2.2: An attention heatmap on an induction head for a transformer performing a translation
task. Darker colours correspond to larger scores, with the scores in each row summing to 1 due to
softmax. Here we can see that for the destination token ‘grand’ (the highlighted row), the token
being most strongly attended to is ‘temple’ (the bright red square in this row). We can hypothesise
this is because the transformer has learned to attend to this token since it is the next word that needs
to be translated. Taken from [15].

2.2.5 MLP Layers

MLP Layers are much simpler to describe than Attention Layers since they are simply one-layer
feed-forward neural networks.

MLP Layers operate on each token in parallel (just as LayerNorm does). We can thus see MLP
Layers as operating as m(x) = (m(x1), ...,m(xl)). Then, the operation m : Rdmodel → Rdmodel is
defined as

Definition 3. Given a single Residual Stream activation input x ∈ Rdmodel, define the function m(x)
as the composition

m(x) = g(σ(f(x)))

where

f(x) = Wm
inx+ bin for Wm

in ∈ Rdmlp×dmodel ,bm
in ∈ Rdmlp

σ = GeLU (activation function)

g(z) = Wm
outz + bout for Wm

out ∈ Rdmodel×dmlp ,bm
out ∈ Rdmodel

Typically, dmlp = 4dmodel, but this isn’t necessary and is just convention.
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Chapter 3

Literature Review

This chapter presents a survey of literature relevant to this thesis. It briefly discusses current
approaches to controlling language models, before examining how exploiting the feature rep-
resentations used by generative image networks can be used to better control these models. We
then consider how these techniques can be applied to language models, with an emphasis on
existing work understanding the activation space of language models.

3.1 Transformers and Large Language Models

Most of the most capable systems developed in Machine Learning today are based on neural
network architectures, which are trained on data with a loss function using a combination of
methods such as backpropagation and stochastic gradient descent. One of the early successes of
gradient-based approaches to training neural networks came in Lecun et al. [16], where convo-
lutional neural networks were trained to achieve state-of-the-art performance for recognising
handwritten digits. The capabilities of neural networks on computer vision tasks advanced
rapidly throughout the early 2010s [17], in large part due to the continued development of
GPUs.

Besides computer vision, another domain that emerged was that of sequence tasks: given a
sequence of inputs, a model would be tasked with predicting the next element of the sequence.
Language generation can also be seen as an instance of this problem: given text as input, text
that a model predicts as output can be used to extend the text input.

The state-of-the-art architectures for language neural networks until 2017 were sequence
models such as RNNs [18] and LSTMs [19]. However, these architectures had some issues,
such as vanishing gradients and difficulty capturing long-range dependencies in text. The com-
putations needed to train these models were also not easy to parallelise, meaning that these
models didn’t benefit as much from the use of GPUs as vision models like CNNs.

The introduction of the transformer architecture [20] contributed to solving these issues of
vanishing gradients and inability to parallelise, leading to great advancements in language
generation. There are several variations of the transformer architecture which have been used
for different tasks:

• One architecture is the Masked Language Model (MLM), including the BERT family of
models [21] which were designed to be fine-tuned to be used for various other tasks such
as sentiment analysis. These are sometimes referred to as encoder-only models.
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• Another class of models are Machine Translation Models (MT), which take in both a
source sentence and the start of a translation as the destination before iteratively produc-
ing the translation. This was the architecture originally introduced by Vaswani et al. [20].
These models are sometimes referred to as encoder-decoder models.

• The final major class of models are Language Models (LM), which take in a single string
as input and iteratively add to it. These models are sometimes referred to as decoder-only
models. This thesis will focus primarily on decoder-only models, with more detail on this
architecture presented in Section 2.2.

OpenAI has developed some of the most capable decoder-only language models, using in-
creasingly large architectures for the GPT-1 [22], GPT-2 [23], GPT-3 [24] and GPT-4 [3] models.

One important fact about these models is that, empirically, it has been observed that training
larger models on larger datasets leads to increasingly more capable models. This trend was
formalised in Kaplan et al. [25], which demonstrated a power-law relationship between the loss
of a language model and the total amount of compute used to train the model. This result was
refined by Hoffmann et al. [26], presenting a compute-optimal ratio between dataset size and
model parameters when optimising for model performance. Language models with sufficiently
many parameters are often referred to as Large Language Models (LLMs).

3.2 Controlling Language Models

Despite the increase in capabilities of state-of-the-art ML systems, there are still many open
questions surrounding how to control these systems. These issues pertain to both longer-term
concerns, as well as pragmatic concerns around how to control LLMs to prevent them from
being misused. A brief overview of some of these issues is presented in Amodei et al. [27].

These issues also apply to Large Language Models. Controlling the output of these models has
proved difficult, although several techniques have been developed to address these shortcom-
ings. One example is reinforcement learning from human feedback (RLHF) [11], which uses
human feedback-based reinforcement learning to shape model behaviour. RLHF has proved to
be practically useful for better controlling LLMs, although it suffers from various issues such as
the difficulty of providing accurate feedback to models Casper et al. [28].

Relatedly, RLHF is a computationally intensive process, requiring many iterations of back-
propagation as well as a large amount of feedback from humans (which can be costly to ob-
tain). To make these methods less costly to implement, it is important to develop methods for
controlling LLMs which might be less computationally expensive.

Extensions to RLHF have also been proposed, although they suffer from the same fundamen-
tal issues [29].

A different approach is known as prompt engineering, where variations of the input prompt
are designed to better control the model. One prominent example of this is chain of thought
(CoT) prompting [30], where models are prompted to explain their reasoning to improve the
quality of their responses. Although this has been demonstrated to be practically useful, this
method essentially only papers over the issues of controlling language models without dealing
with them properly. Indeed, CoT prompting often elicits unfaithful explanations from models
Turpin et al. [31]. Relying on prompt engineering also relies on users to use models as intended,
which introduces the potential for misuse from prompt injections and jailbreaking.
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3.3 Neural Network Interpretability

Neural network interpretability is a growing sub-field of machine learning research, focused on
trying to describe the computations of neural networks in human understandable terms. Better
understanding neural networks, beyond merely viewing them as black boxes, can also enhance
our control over systems like LLMs.

3.3.1 Feature Representations

One promising finding in early neural network interpretability was a growing body of evidence
that neural networks learned to represent features of inputs, using human-interpretable rep-
resentations. The working definition of features used throughout this thesis is based on the
definition provided by Ilyas et al. [32]:

Definition 4. A feature is a a function mapping from the input space X to the real numbers R,
with the set of all features thus being F = f : X → R.

One example of a feature of some text s might be a function that maps to 1 if an animal is
described in the text, and 0 otherwise. This description is broad enough that any attribute of
text can be described formally as a feature this way.

When trying to understand how neural networks utilise features of inputs, it is often desir-
able to try to create feature representations: subsets of activation space in a neural network
which correspond to single, somewhat indivisible concepts. Being able to find the feature rep-
resentations used by a network would allow you to understand what features of the input are
important in determining the outputs of a network, which would be highly significant for a
range of interpretability efforts.

Olah et al. [5] made valuable early contributions to understanding feature representations,
locating and analysing neurons in CNNs which appeared to correspond to networks represent-
ing features internally. Another example was the existence of a neuron in a CNN corresponding
to photos, drawings, and text describing Spiderman Goh et al. [6]. There is also empirical
evidence for this in RNN-style models Radford et al. [7], where an LSTM trained to gener-
ate reviews was found to contain a single neuron which corresponded to the sentiment of the
review.

Another significant example of networks learning to represent features is Mikolov et al. [33],
where the authors trained a simple Recurrent Neural Network using word2vec embeddings be-
fore investigating the properties of the word embeddings. Mikolov et al. [33] showed that the
embedding vectors often satisfied algebraic properties that suggested certain features were be-
ing represented in embedding space (such as embed(queen) ≈ embed(king) + embed(woman)−
embed(man) suggesting that a woman vector exists).

Despite the above examples of successfully finding feature representations in neural net-
works, finding these feature representations was often resource-intensive, and no general method
for finding all the features represented internally by networks has been proposed.

3.3.2 Stucture of Feature Representations

One of the major issues faced when trying to find feature representations in neural networks
is trying to understand the kinds of mathematical objects which could best be used to describe
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them. Naively, one might hope that features will always be represented by single neurons in
networks. However in practise many neurons in CNNs were shown to be polysemantic, meaning
that they correspond to multiple features of the input [5].

One potential explanation for polysemanticity is the phenomenon of superposition. The ba-
sic idea is that a model is often incentivised to store more features than it has dimensions in
its latent representations. If the extra features are important enough then the model will be
incentivised to try to store more features than it has neurons, causing it to compress its rep-
resentation of these features. Elhage et al. [34] were the first to refer to this phenomenon as
superposition, and were able to construct several examples of this occurring in toy models. The
authors also conjecture that superposition occurs in large language models, due to the huge
number of features it is useful for a model to be able to represent. This poses significant chal-
lenges when trying to understand large language models, since if superposition occurs then
it will be impossible to construct a basis with each feature corresponding to a different basis
vector.

Even assuming that superposition is a factor in how features are represented in transformers,
it is not clear exactly how they are being represented. Elhage et al. [34] show that in simple
linear models with a single ReLU activation function, features may be represented as directions
in activation space. An alternative, proposed by Black et al. [35], is that convex regions of space
might be used to represent features instead. There are some theoretical reasons to consider con-
vex regions of activation space instead of directions: networks which use only ReLU functions
for their non-linear activations can be understood as partitioning the input space into convex
polytopes, and performing some simple linear function on each polytope [36]. Recent work
has focused on generalising these results to other activation functions through an abstraction
known as max-affine spline operators [37]. However, these generalisations and formalisms
are based on classic feed-forward networks, with similar formalisms yet to be made for the
transformer architecture. Indeed Section 5.1 will present the claim that features in transformer
models are represented as directions, not convex regions of space.

3.3.3 Using Feature Vectors in Latent Space

One benefit of locating feature representations in neural networks is that it introduces the
possibility of controlling the behaviour of models, by increasing or reducing the presence of
features in the activations of a model.

The most significant examples of this line of work exist in the domain of generative image
models. Radford et al. [38] demonstrated that the latent space of DCGANs is often seman-
tically meaningful, showing that you could perform similar arithmetic to vectors as done by
Mikolov et al. [33] and produce meaningful alterations to images. A similar phenomenon was
investigated by Larsen et al. [39] in the context of VAE models.

These papers were extended further by White [8], who suggested performing the interpola-
tion using spherical coordinates as opposed to just linearly. One thing to note here is that the
mean of the activations can be assumed to be zero since the mean of the Gaussian prior is gen-
erally taken to be zero for these models. As noted by Cai et al. [40], this assumption breaks in
the case of language models, so we would need to take into account the bias when considering
latent space manipulations of language models.

White [8] also introduced a method of using feature representations to classify images, if the
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feature is assumed to be represented as a direction. The algorithm, AtDot, uses the inner prod-
uct between some feature vector and the activation associated with an image to be classified.
This inner product can then form the basis of a classifier. In the domain of image classification,
at the time this achieved performance often comparable or better than CNNs. This greatly in-
forms the algorithm we propose for classification using language models, AtDotLLM, in Section
5.5.

The final useful point from White [8] is that labels can often be correlated, which can cause
bias in the feature vector. For example, they found that smiling was often correlated with being
female in the CelebA dataset, so the smiling vector also caused images to appear more feminine.
In order to prevent this, the dataset was balanced. When performing analogous investigations
for transformer models, unintended correlations in the data used to produce steering vectors
could cause similar unintended biases, which it will be important to be aware of.

3.4 Language Model Interpretability

Although early work in interpretability largely focused on architectures such as CNNs and
RNNs, there is an increasing amount of work focusing on transformer interpretability. [13]
was one of the earliest works here, providing a foundation for future interpretability work by
offering clear mathematical insights into transformer operations.

A challenge in this domain is identifying phenomena in smaller networks that can be gener-
alised to larger networks. One success here is the identification of induction heads in language
models Olsson et al. [15], which search for the previous occurrence of a token before attending
to the following token. For example, when given a chapter from Harry Potter which finishes
with the token “Harry”, induction heads would use previous occurrences of “Harry Potter” to
predict that the correct continuation is “Potter”. Induction heads were originally observed in
smaller toy models, and have since been found in several larger language models.

3.4.1 Feature Representations in Language Models

In Chapter 5.1, we will claim that features are represented as directions in language models.
Assuming this is true, two important sub-questions might arise.

Open Question 1. To what extent do GPT-2 style transformers represent features using the same
direction across layers?

There is some evidence to suggest that the same direction corresponds to the same feature
across different layers of the transformer: nostalgebrist [41] demonstrates that applying the
unembedding matrix directly to latent activations often leads to predicting the final output
token before the final layer itself does.

However, other work [42] has demonstrated that improvements to [41] can be made by
learning affine transformations from each layer to the output layer. This suggests that there is
some degree of representation shift across layers, i.e. that feature directions are not entirely
consistent across layers.

In light of this, in general it shouldn’t be assumed that feature directions are perfectly consis-
tent across different layers of the transformer. This means that activations from one layer will
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not be directly compared with activations in subsequent layers, as these comparisons will not
be meaningful if there is representation shift.

The partial success of [41] means that representations might remain constant enough that
directly unembedding activations at intermediate layers can provide useful information. This is
the implicit assumption made by the method described in Section 4.1.4, although it is important
to recognise the shortcomings of this method.

The second sub-question is how many features a transformer might be capable of represent-
ing if features are represented as directions in activation space.

Hypothesis 1. GPT-2 style transformers with a Residual Stream of dimension dmodel could repre-
sent exponentially many features, if features are represented as directions.

As demonstrated by Elhage et al. [34], it is unlikely that neural networks will learn to rep-
resent single interpretable features through single neurons in a network. This is because of
superposition: networks can learn more features than they have neurons, at the cost of having
some interference between different features.

Although directly answering how many features a network might learn to represent is an
open question, it is possible to gather evidence about this by answering a related question:
how many almost orthogonal vectors can be fit into an n-dimensional vector space? Almost
orthogonal vectors are defined to be vectors with an angle smaller than some small angle θ.

Wyner [43] demonstrates that you can fit at least exp(nlog( 1
sinθ )+o(n)) spherical caps of angle

θ onto a sphere, such that no two spherical caps overlap. This is a sufficient (but not necessary)
condition for finding a set of almost orthogonal vectors in n dimensional space, where all pairs
of vectors have an angle of at least θ between them.

As described by Roger [14], one can apply this to the size of the Residual Stream of different
transformer architectures to estimate how many feature vectors can fit into the Residual Stream
space with a cosine similarity less than some threshold. Note also that Layer Norm makes little
impact on this, since projecting to a (n− 1)-dimensional plane has little impact for large n with
respect to cosine similarity, and projecting to a sphere has no impact on cosine similarity.

If n = 1600, as is the case for GPT-2 XL’s Residual Stream, then it is possible to fit at least 3000
vectors with pairwise cosine similarity less than 0.1 into the Residual Stream. If the pairwise
cosine similarity is relaxed to only requiring smaller than 0.2, then 1014 vectors can be fit in the
Residual Stream.

If n = 12288, as is the case for GPT-3’s Residual Stream, then it is possible to fit at least 106

vectors with pairwise cosine similarity less than 0.05 into the Residual Stream. If the pairwise
cosine similarity is relaxed to only requiring smaller than 0.1, then 1026 vectors can be fit in the
Residual Stream.

This helps to provide an intuition for how many features might be able to be represented by
a transformer, if there is an allowance for any two vectors to have a small cosine similarity:
potentially exponentially many, compared to the size of the Residual Stream.

It also suggests that there might be a larger incentive to represent a feature using the same
direction across different inputs for smaller models when compared to larger models. This is
because larger models can represent many more features for the same amount of interference,
so there may be less pressure to compress their representations.
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3.5 Visualising Data

Since transformers often operate on vector spaces with dimensions in the range of thousands
or tens of thousands, it is often necessary to be able to visualise high-dimensional data when
interpreting transformer networks. This section introduces various mathematical and empirical
techniques to aid in visualising and interpreting high-dimensional data.

3.5.1 t-SNE

One of the most popular approaches to producing low-dimensional plots of high-dimensional
data is t-SNE [44]. t-SNE works by describing the distribution of similarities between points in
their original high-dimensional space, P , and another distribution of similarities between points
as described in low-dimensional space, Q. The KL divergence between these distributions is
given by (KL(P ||Q)). This divergence can be minimised using gradient descent.

It is important to understand some of the details of this algorithm to better understand its
uses and limitations. Firstly, the nature of KL divergence means that a relatively large penalty
is applied to plotting points far away from each other if they occur close together in the high-
dimensional space. The penalty is less severe for plotting points near each other which are far
away in the high-dimensional space. This may lead to points being positioned near each other
even if they are relatively far away in the high-dimensional space, if this helps other points to
be positioned better. This is worth noting when interpreting KL divergence.

Another important aspect is that since the distributions P and Q only incorporate informa-
tion about the local similarities between points, t-SNE plots will only preserve local information
about data points. Because of this, it is often not meaningful to interpret more global informa-
tion about data points from the t-SNE plots.

A practical point is that, since t-SNE optimises the KL divergence using gradient descent, the
low-dimensional description can get stuck in a local minimum. Fortunately, this can often be
alleviated through using different initialisations alongside methods such as early exaggeration.
Other practical issues arise when choosing how to measure similarities, with choices for both
the high-dimensional similarity measure (perplexity, Gaussian or uniform kernels) and the low-
dimensional similarity measure (how heavy-tailed to make the distance function).

t-SNE plots will be used extensively in Section 4 to perform exploratory analyses of language
model activations. An alternative method could have been the UMAP algorithm, which has
similar benefits and drawbacks to t-SNE McInnes et al. [45].

Another popular method for visualising high-dimensional data is Principal Component Anal-
ysis, or PCA (see Shlens [46] for a review). PCA identifies the basis vectors that account for the
most variance in a set of vectors, before projecting the data points onto this basis and visualising
the results.

3.5.2 AttentionViz

Some techniques have used these methods to develop methods specifically for visualising the
activations of transformer models. One prominent example is AttentionViz, developed in Yeh
et al. [47] to help self-attention at arbitrary layers of the transformer, for arbitrary inputs.
This tool is useful for trying to understand which Attention Heads are relevant for certain
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computations since it provides some insight into the target tokens being focused on by different
source tokens for an Attention Head. This tool won’t be used directly in the project, although
it inspired the use of t-SNE plots to visualise activation space in the empirical investigations in
Chapter 4.

3.6 Language Model Activations

This thesis will focus primarily on analysing the activations of language models, and analysing
the similarities and differences between activations from different inputs. There is existing
work which looks at similar questions, which will be useful both in providing potential avenues
of exploration as well as object-level evidence about the activations of these models.

3.6.1 Contextual Word Representations

One important question when analysing the activations of a transformer on a sequence of text
is how dependent these activations are on the specific context in which they are found, as
opposed to being well predicted by just the token itself. Ethayarajh [48] examines the relation-
ship between tokens and their associated Residual Stream activations, and interprets these as
contextual representations of the token.

Some of the interpretations made by this paper do not seem applicable to language models
specifically. For example, the interpretation of the Residual Stream as contextual representa-
tions of words is somewhat unfounded - although the Residual Stream can be initially seen as a
static representation of the word vectors with their positions, the Residual Stream is eventually
used to make predictions about the next token in the sequence, so it doesn’t make sense to
interpret it as providing a contextual representation of the token, especially for later layers.

One significant finding is that activations of the Residual Stream, across randomly sampled
words, seemed to be highly anisotropic. This means that the directions are not uniformly dis-
tributed throughout the latent space of a given layer, and instead lie predominantly inside a
narrow cone about the origin. This is significant because it suggests that there is a great deal of
redundancy in how these models are processing information: it suggests that many directions
are being underutilised, compared to what is optimal. Ethayarajh [48] measure this by comput-
ing the average cosine similarity between vectors in the Residual Stream for randomly sampled
words, across all layers of the model, and find that for GPT-2 the average cosine similarity is
non-zero.

3.6.2 Evolution of Activations through Layers

Voita et al. [49] formalises the shortcomings of Ethayarajh [48] well, emphasising that the
Residual Stream needs to both preserve information needed to build representations for other
tokens, whilst also predicting the output label. This is different to other model architectures
such as Machine Translation and Masked Language Modelling, and is important to consider
when analysing the Residual Stream and activations for language models such as GPT-2.

This is demonstrated empirically by estimating the mutual information between the initial
source token, and the vector in the Residual Stream corresponding to that token at other layers
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in the model. For GPT-1 this decreased throughout deeper layers, which is consistent with the
hypothesis that the model gradually forgets the input token throughout the forward pass. A
symmetric analysis was carried out for the output token and found that the mutual information
monotonically increased.

Voita et al. [49] also creates t-SNE plots for the Residual Stream activations of different tokens
across layers in a model. By producing these plots for each layer of the original GPT-1 model,
one can see that the representations start by forming discrete clusters in early layers based on
input tokens, which merge in later layers.

If Voita et al. [49] demonstrate that there are clusters in early layers based on the input token,
then many of the empirical investigations in Chapter 4 can be seen as trying to understand the
conditions under which clusters will form in later layers. The results provided by [49] serve as
a useful proof of concept for this line of investigation.

3.6.3 Describing GPT-2’s Activations

After accounting for the misinterpretation of Residual Stream activations, there are two major
open questions posed by Ethayarajh [48]: why does anisotropy arise; and can a fuller geo-
metric description of the activations be provided besides simply noticing the anisotropy? Gao
et al. [50] provide one potential explanation for the anisotropy, suggesting that it can arise in
embeddings for transformer models due to a combination of layer-normalisation and weight
tying, alongside the fact that when training on language tasks there will inevitably be tokens
with a low frequency relative to the entire training corpus. This suggests that the phenomenon
of anisotropy isn’t just a quirk of some of the smaller models which have been investigated, but
could also arise in larger decoder-only language models. That being said, there are some limi-
tations of the explanation provided: it makes some assumptions about the frequency of tokens
in the corpus used to train models which might not be realistic; and it only applies to initial
embeddings, not explaining why anisotropy can persist and even increase across layers. These
questions will be investigated further in Section 4.2.

Cai et al. [40] provide a further description of anisotropy and carry out more investigations
of the Residual Stream of GPT-2 across a large dataset of inputs. They first measure how well
the space can be described using PCA, and look at the singular value distribution of the Residual
Stream to do this. Separately, the authors perform K-means clustering alongside using a mea-
sure of clustering quality known as Maximum-Mean-Silhouette to describe how the activation
clusters are distributed in the space. Both the PCA and K-means results suggest that the acti-
vations of GPT-2 small are well described by two clusters, complicating the picture of a single
cone.

This also helps to further explain the seemingly anomalous result from Ethayarajh [48]: if you
shift the mean from each cluster to the origin, and then look at the cosine similarities between
tokens in the same cluster, the anisotropy disappears. This mirrors the word representation
post-processing technique introduced by Mu et al. [51], and the resulting clusters demonstrate
approximately 0 average cosine similarity between word representations for most layers in GPT-
2 small. This means that the Residual Stream is almost perfectly isotropic within each cluster.

Cai et al. [40] make further investigations into the nature of these activation clusters. Some
important results with respect to GPT-2 small were:

• Several layers seemed to arrange points into a “swiss roll” structure after PCA is performed
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on the activations. Tokens with smaller positional encodings mapped closer to the centre
of the roll.

• The frequency of the token influences its embedding position.

• The two clusters did not seem to correspond to different sets of tokens: a token in the
smaller cluster would often appear in the larger cluster, dependent on the context.

• The approximate local intrinsic dimension is 7. This increases throughout the layers of
GPT-2 and is significantly smaller than that given by static word embeddings.

This paper makes a good deal of progress towards some of the goals of this thesis. However,
several directions remain unexplored here.

• Although different models are explored, the authors do not test whether the results found
in GPT-2 small replicate to other decoder-only transformers. This makes it hard to know
whether these are properties of the specific model they tested, or whether they are pre-
served as scale increases.

• Cai et al. [40] focus on similarities between activations for the same input tokens, across
different contexts. They do not focus on activations between different tasks which pro-
duce similar outputs.

• The Residual Stream is the only space examined: they do not consider the outputs of the
Attention Heads, or MLP Layers, directly.

This paper significantly informs this thesis. Many of the investigations in Section 4 seek
to address the directions for future work suggested by this paper, and the thorough account
of anisotropy directly informs the development of mean-centred activation steering in Section
5.2.2.

3.7 Manipulating LLM Activations

A major aim of this thesis is to better understand the structure of language model activations,
to better control the behaviour of language models through intervening on the activations of
language models. There have been some recent developments in this area, which can be seen
as extending the analogous methods for image models from Section 3.3.3.

3.7.1 Activation Steering

One method for changing the behaviour of LLMs by intervening on their activations is developed
by Turner et al. [52]. Their method works by modifying activations at inference time, by adding
a steering vector to the Residual Stream activations at some layer. These steering vectors are
generated by storing the activations associated with an arbitrary prompt, at some layer of the
model.

This method is promising, since it has much lower computational overheads than other meth-
ods such as RLHF and finetuning. It also potentially offers a more principled method of control
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than prompt engineering. However, there are a number of free parameters which need to be
optimised for the method to work correctly, and there is currently no principled method of find-
ing these outside of grid search. The method of using single text prompts to generate steering
vectors is also limited.

3.7.2 Detecting and Improving Truthfulness

Some initial explorations in applying these ideas to language models have indeed been fruitful,
although they have been somewhat limited in scope. One prominent example of this kind of
work is Burns et al. [53], where the authors train a linear network to accurately answer yes-
no questions, using only the activations of a language model. Surprisingly, this method often
outperformed the zero-shot accuracy of the language models themselves.

There are several interesting ideas to take from this. Firstly, the paper demonstrates that
tractable progress can be made in improving our understanding of language models using ex-
isting techniques. There is also the object-level result itself: since the model they trained on the
activations of the language model was a simple linear probe, it suggests that something corre-
sponding to a truth feature is encoded as a direction in the final layer of the model, which pro-
vides some evidence that features in language models occurring in multiple different contexts
are represented as single directions. This suggests that feature detection is indeed tractable.

The obvious extension of this work is to find directions which correspond to truthful outputs
to improve the truthfulness of language models. Li et al. [54] do this by adding outputs to
certain Attention Heads which correspond the most to truth during inference, and demonstrate
that this can improve truthfulness without degrading performance too drastically.

3.8 Summary

Additional work is required to be able to control LLMs (Section 3.2). There has been some
progress in controlling other kinds of neural networks by exploiting how they represent features
of inputs (Section 3.3). There has been some initial progress in understanding the structure
of language model activations (Section 3.6), before using this knowledge to better control
language models (Section 3.7).

The rest of this thesis will seek to make further contributions to these final two areas. Chap-
ter 4 will provide an empirical investigation into the structure of language model activations,
focusing specifically on when and how they represent features of text. Chapter 5 will begin
with a further theoretical investigation of the structure of language model activations, before
using this improved understanding of language model activations to develop new methods for
controlling language models.
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Chapter 4

Empirical Investigation

The purpose of this chapter is to empirically investigate the structure of the activations of lan-
guage models. In particular, we will investigate how and when features of text are represented
in the activations of transformer models. Some sub-questions to help answer this will include:

• For which layers are activations of language models zero-centred, if any?

• Do transformer models represent features of text via activations?

• If a transformer represents a feature, in what layer is it first represented?

• Which features predict similarities between activations the best? Does this change across
layers?

• Do these findings differ across models?

The general method used to investigate this will be to create datasets of strings S such that the
strings in S share some feature. The activations associated with these strings for some model
can then be analysed, to better understand which features of text are salient for changing how
models process different inputs.

For the models studied here (GPT-2 small, medium, large and XL), the activations lie in high-
dimensional vector spaces (ranging from 768 to 1600), meaning that it is not trivial to compare
the activations. To aid with this, we present several different methods which can be used to
infer information about the activation space in Section 4.1.

We then use these empirical methods to look at how some specific features are represented in
these models. We will then summarise some broader inferences that can be drawn about how
these models represent certain features.

4.1 Methods

This section will discuss four experiments for empirically analysing the activations of trans-
former models.
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4.1.1 Singular Value Distribution of Datasets

This method was designed to help determine which features of text could best predict similari-
ties between activations. The goal was to develop a measure to gauge the variety of activations
for a given dataset at a specific layer: large variety in activations means that the feature is a bad
predictor for the activations at the layer; lower variety in activations means that the feature is
a good predictor.

The general setup for the experiment was as follows:

1. Create a dataset S of size N , where every element of the dataset is composed of k tokens.

2. Feed each of the strings in S into a GPT-2 model and store the activations Xi at some
layer i of the network for either the outputs of the MLP Layer, the Attention Layer, or the
Residual Stream.

3. Normalise Xi, and look at the matrix resulting from Yi = XT
i Xi.

4. Calculate the singular value decomposition of Yi. Plot the distribution of the singular
values of this matrix.

Repeating this for different datasets allows us to compare the singular values of the activation
matrix for different datasets. The dataset size N and number of tokens k were held constant
for each dataset, to make the comparison as meaningful as possible.

This can be interpreted as follows: a more uniform distribution of singular values means there
is more variety in the activations, since it takes a larger subspace to accurately approximate
the activations. Conversely, a less uniform distribution (with singular values decreasing more
quickly) means that a smaller subspace can accurately approximate the activations, suggesting
that the feature is a better predictor of the activations.

4.1.2 PCA Reconstruction Errors

The experiments in 4.1.1 provide evidence that different datasets inputted to GPT-2 can lead to
variations in the number of dimensions that their corresponding activations can be described
with. However, singular value decomposition also generates singular vectors, which can be
used to better understand which subspaces the activations typically lie in. By comparing the
singular vectors of the activations for two different datasets, it is possible to measure how
similar different datasets are.

One method we may wish to do this through is by comparing how well the top k principal
vectors from one dataset can be used to approximate the activations from a different dataset.

1. Create a target dataset S of size N1.

2. Feed each of the strings in S into a GPT-2 model and store the activations Xi at some
layer i of the network for either the outputs of the MLP Layer, the Attention Layer, or the
Residual Stream.

3. Calculate the singular value decomposition of Y . Take the top k singular vectors, which
correspond to the k largest singular values.
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4. Create a comparison dataset S ′, of size N2.

5. Feed each of the strings in S ′ into a GPT-2 model, and store the activations X ′
i at the

layer i of the network for either the outputs of the MLP Layer, the Attention Layer, or the
Residual Stream.

6. Project the rows of X ′
i onto the subspace generated by the top k singular vectors from Xi.

7. Look at the L2 norm of the errors. Calculate this as a fraction of the L2 norm of the
original row vectors in X ′

i.

8. Take this fraction as the reconstruction accuracy.

We can repeat this process for multiple target datasets, as well as for multiple comparison
datasets. The reconstruction accuracy can then be interpreted as a measure of how similar two
different datasets are: if the reconstruction accuracy for a dataset Z1 on a target dataset X is
higher than the reconstruction accuracy on a second dataset Z2, then we might interpret this as
Z1 being processed more similarly to X than Z2, at this location in the model.

Note that there are various parameters in the above that we could vary. We can consider
what would be learned about the models if these parameters were to be varied.

Vary Number of Principal Components
One parameter that could be varied is the number of principal components, denoted by k,

that activations are projected onto.
This can be particularly useful if the activations of each dataset are projected onto its own

top k principal components. This provides a metric for how well different datasets can be
approximated via low-rank approximations.

Vary Layers
We might also keep the number of principal components k fixed, and instead vary i, the

layer we look at the activations of. This will allow us to see whether different datasets are
processed similarly throughout the layers of a model, or if instead there are differences based
on the location. This might help us to characterise which layers of models are most relevant for
representing different features of text.

4.1.3 t-SNE Plots

Another approach to differentiate between datasets is to generate low-level descriptions of their
activations and observe their distributions.

We utilised t-SNE to produce these low-dimensional descriptions. This has some disadvan-
tages, as noted in Section 3.5.1, but it should be able to determine whether datasets can be
separated based on local distances between points.

1. Create multiple datasets X1, X2, ..., Xn of size N1.

2. Feed each of the strings in each of the datasets into a GPT-2 model, and store the activa-
tions from either the outputs of Attention Layers, MLP Layers, or the Residual Stream for
some layer i of the transformer.

3. Create a 2-D t-SNE plot from these activations.
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The existence of clusters in these t-SNE plots will suggest that there are similarities between
the activations for the different inputs in the studied datasets. This can help us to determine
which features of text are being represented by the transformer, as well as which layers they
are first represented in.

4.1.4 Comparing Feature Vectors to Embedding Vectors

To better understand potential feature vectors, it is useful to find ways to interpret them. One
method of doing this, as demonstrated by Beren Millidge [55], is to compare the inner product
of the vector with each token embedding. We can then find the top k tokens which generate
the highest dot product, and the bottom k tokens which generate the smallest dot product.

The intuition behind this is that it should provide information about what the chosen vector
represents: if it is most similar to words associated with fantasy stories, for example, then we
might assume that the vector represents a feature associated with fantasy stories.

It should be noted that this is not a rigorous comparison, since we are making the implicit
assumption that feature representations are consistent across layers of the transformer (Section
3.4.1). Despite these caveats, empirically this represents a useful method for better understand-
ing and interpreting vectors in the Residual Stream.

In Table 4.1 we show one example of performing the above analysis.

Table 4.1: Tokens with Highest and Lowest Cosine Similarity to the vector from the mean of activa-
tions from a subset of the training dataset, to the mean of activations of the fantasy dataset. Using
GPT-2 XL, analysing the Residual Stream after layer 30.

Tokens with Highest Cosine Similarity Tokens with Lowest Cosine Similarity

enchanted itto
mystical endors
magical pez
awakened referen
sorce zzi
enchant Anyway
mystic NYT
arcane crap
awakening Tank
destiny BUS
enchantment pson
magic Reps
awaken Jerry
treasures Asked
secrets Corrections
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4.2 Understanding Bias in Activations

The following is the first experiment conducted on the activations of GPT-2 models. The pur-
pose of this experiment is to determine the extent to which there is bias and clustering in the
activations of GPT-2 models, helping to understand whether activations are centred around the
origin or not. This is important to determine when developing approaches for activation addi-
tions, which we will discuss in Section 5.4. We will follow a similar analysis to that carried out
by [40].

4.2.1 Does a bias exist?

One method of seeing the extent to which there is clustering in activation space is to look at
the average cosine similarity between different vectors in the Residual Stream. Vectors which
are uniformly distributed around the origin should produce an average cosine similarity of 0;
all vectors lying along a single direction would give an average cosine similarity of 1.

Here, we take the average cosine similarity between all pairs of activation vectors from either
the Residual Stream, output of Attention Layers, and output of MLP Layers separately.
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Figure 4.1: Average cosine similarity across pairs of activations in either the Residual Stream, the
output of an Attention Layer, or the output of an MLP layer. Results are for GPT-2 small, medium,
large and XL respectively. Activations were generated from a subset of training data [56].

Figure 4.1 demonstrates that for the GPT-2 models (small, medium, large, XL), there exists a
bias in the Residual Stream across all layers. It is interesting to note that in GPT-2 large and XL
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there is initially little bias, before it grows over the first few layers. All models also exhibit an
increase in bias in the final few layers.

All models also exhibit non-zero bias in the output of the Attention Layer across all layers,
although this is lower than the Residual Stream bias. The MLP Layers seem to exhibit some bias
in the penultimate layer of each model.

4.2.2 Implications for Investigations

The existence of bias in the Residual Stream activations has several implications for interpreting
results in the ensuing investigations of GPT-2 models. First, note that PCA reconstruction accu-
racies may be expected to be higher than they would be without bias in activations, since bias
in the activation space implies larger than 0 average cosine similarity between PCA directions.

Also, note that since there are significant changes in the average magnitude of bias in the
activation space across layers, we may expect to see trends in the PCA reconstruction accuracies
across layers. Hence when analysing trends in PCA reconstruction accuracises across layers, the
trends in bias size should be taken into account.

4.3 Model Output

The rest of this Chapter will consist of investigations into the structure of activations for specific
datasets, using the methods in Section 4.1. Each of these datasets corresponds to different
features of text, so these investigations can be interpreted as investigations into how GPT-2
models represent different features.

The first investigation aims to see whether t-SNE plots on the activations can produce clusters
with respect to the expected model output. This is motivated by the monotonic increase in
mutual information between activations and model output observed in Voita et al. [49].

This can be tested by choosing a simple task which the model can perform, determined by
evaluating it on different inputs. One such task is simply repeating a string, corresponding to
the prompt shown in Figure 4.2.

Repeat the string ‘{x} {y} f’. {x} {y}

Figure 4.2: Template for the text in the repetition dataset. Text in {} are variables, which can stand
for any letter a-z. All the GPT-2 models correctly outputted the token ‘ f’ for these inputs.

Figure 4.3 demonstrates how clustering in the final position of the activations changes through-
out the layers of the transformer (in this case GPT-2 large). Initially we see 26 clusters, which
corresponds to the 26 different ways the input prompt can end. Then we see these clusters be-
gin to separate based on the output label, before the outputs are separated into global clusters
based on the output. Interestingly each global cluster is still composed of 26 smaller clusters,
which correspond to the final tokens of the input prompts (i.e. the variable y in the template).

This provides strong evidence that low-level features of input data can be lead to geometric
similarities in activations of GPT-2 style models. This suggests that trying to analyse features
geometrically could be promising across more complex and interesting datasets.
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Figure 4.3: t-SNE plots for Residual Stream activations across various layers in GPT-2 large, for six
different repetition datasets.

4.4 Numerical Datasets

Following the clear demonstration of clustering based on outputs in Section 4.3, a natural
extension is to conduct a wider investigation on other tightly controlled datasets. We investigate
different numerical datasets, to better understand the similarities and differences between how
their activations are structured.

It is important to note that neither GPT-2 small nor GPT-2 XL perform well on any of these
basic arithmetic datasets. This means that we shouldn’t expect to see clustering emerge based
on the outputs of these models, but the models’ treatment of different datasets can still be
analysed. This might be useful in better understanding how models perform even when they
are failing on certain tasks.

4.4.1 Datasets

Seven different datasets were compared for this experiment.

1. Addition dataset. This dataset consisted of all strings of the form “x + y =”, where x, y
were integers between 0 and 24. These were then tokenised using the GPT-2 tokeniser,
giving a dataset of 5 tokens (also including the EOS token).

2. Multiplication dataset. This dataset was identical to the addition dataset, except that “+”
was replaced by “*”.

3. Shuffled Addition dataset. This dataset was created by randomly shuffling the characters
in the addition dataset.

4. Random Addition dataset. This dataset was similar to the Addition dataset, but instead of
choosing x and y as integers between 0 and 24, 24 tokens were randomly chosen from
GPT-2’s tokeniser. The dataset then consisted of all strings of additions between these.

5. Addition and Multiplication dataset. This dataset was created by choosing inputs from
both the Addition and Multiplication datasets.
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6. Training dataset. Although OpenAI did not open source the dataset used to train GPT-2,
they did publicise how the dataset was collected. This has since been used to create an
open-source replication [56]. This was used to create a dataset by taking a subset of sen-
tences from the training dataset, and then taking the first 5 tokens from these sentences.

7. Random token dataset. This dataset was created by randomly sampling from tokens in
GPT-2’s tokeniser, and creating 5 token long inputs using this.

One important point to note about the above datasets is that the precise makeup of the
datasets is important here if we want to make meaningful comparisons between datasets. The
main reason behind this is the sensitivity of the tokeniser: it will tokenise “x + y =” differently
to “x + y = ”, for example, due to the trailing whitespace after “=” in the second string. This
can also lead to inadvertently creating sequences which require different numbers of tokens to
describe, which would make comparisons between datasets less meaningful.

4.4.2 Results

The singular value distributions (Section 4.1.1) for the activations of GPT-2 Small (Section
4.1.1) on the datasets described above, can be found in Figure 4.4.
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Figure 4.4: Singular value distributions for the activations corresponding to various datasets in
GPT-2 Small.
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The first point to notice is that there are meaningful differences in the singular value dis-
tributions of these datasets, which suggests that different features of datasets can produce
differences in the structure of activations.

Furthermore, the datasets which one might expect to be the “simplest”, i.e. the Addition and
Multiplication datasets, have the least uniform associated singular values. Note that this is not
explained simply by the syntactic regularity of the datasets, which can be seen by comparing
these to the larger singular values associated with the Random Token Addition dataset. This
suggests that the model has learned to reuse similar activations across different integer addition
prompts to a greater than it has for random strings of the form “x + y =”. This might indicate
that the model is representing a feature corresponding to integer addition in the same way
across multiple different inputs.

The structure of the activations associated with the numeric datasets can be investigated
further by producing t-SNE plots (Section 4.1.3). The results are provided in Figure 4.5.
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Figure 4.5: t-SNE plots of Residual Stream activations of GPT-2 small for Addition, Multiplication,
and Shuffled Addition datasets.

Looking at the Residual Stream across layers of GPT-2 small, we see that there is clear clus-
tering for the Addition and Multiplication datasets before layers 1 and 7. Note that some points
in the Shuffled Addition dataset are originally plotted between Addition dataset activations in
layers 1 and 4, before being moved out after layer 7. This might suggest that in early layers the
model doesn’t distinguish between the strings “2 + 2 =” and “+ 2 2 =”, but that this distinction
is then made in the later layers.

Additionally, there is less clear clustering for the Shuffled Addition dataset in general, and
one might hypothesise that the distinct clusters in layer 7 are based on the order the “+” and
“=” tokens arise in.

4.4.3 Analysis

Overall, this investigation provided evidence that singular value distribution plots could help
determine the variety of a model’s behaviour on a dataset. Different datasets produced different
singular value distributions, and this seemed to correspond loosely to the diversity of the tasks
in the dataset. The addition and multiplication of integers seem equally complex, and they seem
to have similar singular value distributions. Likewise, the most complex datasets (the training
dataset and the random token dataset) showed the most uniformity in their corresponding
singular values.
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However, looking at the singular value distribution was insufficient to distinguish between
all of our different datasets. For example, addition and multiplication produced almost iden-
tical plots, and it was not obvious how to interpret the results of the random token dataset as
opposed to the training dataset. Figure 4.5 provided evidence that t-SNE plots could provide a
useful tool for doing this, since they were able to demonstrate separation between the addition
and multiplication datasets.

This suggests the following distinction in uses between methods: singular value distribution
plots demonstrate the complexity of datasets; t-SNE plots demonstrate which individual data
points are being treated similarly or differently to one another.

4.5 Language

Although being able to distinguish between the activations for the highly structured numeric
datasets suggested that this might be possible for a wider range of datasets, one limitation of
these datasets was that they were highly syntactically structured. To address this limitation,
datasets written in different languages are considered (specifically French, German, English,
Spanish, and Portuguese).

Figure 4.6 demonstrates the results of making t-SNE plots from these datasets. They demon-
strate clear separation between different languages, with some small portions of overlap. This
suggests that GPT-2 small recognises the language of the inputs, and represents this in its acti-
vations. One exception to this is that after the final transformer block, there is little separation
between Spanish, Portuguese and French. This could be explained by the similarities in the
tokens used by these languages.

One interesting thing to note here is that the separation isn’t “clustering” in a traditional
sense, but instead the clusters often look more one-dimensional. It is unclear why this is the
case.
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Figure 4.6: t-SNE plots of Residual Stream activations of GPT-2 small, for French (fr), German (de),
English (en), Spanish (es), and Portuguese (pt) sentences.

4.6 Reading Comprehension

Given this initial evidence that some features are represented by GPT-2 models in the activation
space, it would be useful to understand which features affect the outputs of a model, and

35



4.6. READING COMPREHENSION Chapter 4. Empirical Investigation

which features are most relevant in certain layers of a model’s computation. Model behaviour
on reading comprehension datasets was studied to aid with this since GPT-2 XL can perform
well on basic reading comprehension, and the questions can be carefully controlled to pinpoint
exactly which changes have the biggest impact on the output.

4.6.1 Datasets

Each story in the reading comprehension datasets followed this template:

In the quaint village of Meadowbrook, the Thompson family was renowned for
their artistry. {patriarch}, the patriarch, was an accomplished painter. His wife,
{matriarch} Thompson, was a talented sculptor. They had two children, {child1}
and {child2}. {matriarch}’s brother, {brother}, often visited them and was known
for his comical anecdotes.

The name of {matriarch}’s {relation} is

Figure 4.7: Template for the text in the datasets. Names in brackets are variables, which can stand
for any one of ten possible names.

There are several variables in this template, which correspond to the question being asked
(the relation), and the names of different characters.

Datasets were produced by specifying some aspect of the template to be kept fixed across
the dataset, with all non-fixed aspects being randomly sampled to generate each story in the
dataset. Note also that only the activations associated with the final token are analysed
for this Section, since they correspond to the activations used by GPT-2 XL to make its final
prediction.

Three datasets were produced with this method:

• ‘fixed name’ where the correct answer to the final question was kept constant, Taylor;

• ‘fixed relation’ where the question about the relation was kept constant, brother;

• and ‘fixed name and relation’ where both the correct answer and relation were kept con-
stant, i.e. Taylor and brother.

Note that these definitions give some possible overlap between the ‘fixed name’ and ‘fixed
name and relation’ datasets, so the ‘fixed name’ dataset was changed to remove all instances
where the relation was brother.

The purpose of this setup was that it seemed likely that both the relation and answer would
be important for the model in answering the question. This setup allowed us to see the layers
of the model where these features were being represented and used by the models.

4.6.2 Results

T-SNE plots were created for the ‘fixed name’, ‘fixed relation’ and ‘fixed name and relation’
datasets, at various layers of the Residual Stream of GPT-2 XL. The results are shown in Figure
4.8.
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Figure 4.8: t-SNE plots for various layers in the Residual Stream of GPT-2 XL, for the three reading
comprehension datasets.
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After the first layer clusters have emerged, but not based on characteristics which we fixed.
As we look through deeper layers of the model, three clusters begin to emerge for the fixed
name dataset. We then see the ‘fixed name’ and the ‘fixed name and relation’ datasets splitting,
before they eventually form separate clusters. However, it is not the case that each dataset
corresponds to a single cluster in the final layers, as they determine large clusters which are
composed of smaller sub-clusters.

By inspecting the data points in different clusters, we can hypothesise what characterises
them.

Layer 0 Clusters
For the first layer, we find that the clusters correspond to the name of the matriarch in

the story. This might initially seem surprising, but upon further inspection this is the variable
that appears the most in the stories. Hence, perhaps we can hypothesise that this early layer
corresponds to just moving information from all tokens to the final token somewhat uniformly,
and thus we should expect the largest differences to be due to the names which vary the most.

Layer 47 Fixed Relation Clusters
Inspection reveals that these clusters are determined by the correct output name. This is

consistent with what we would expect, since these names are output by GPT-2 XL when we
generate completions with temperature 0.

Layer 47 Fixed Name Clusters
Inspection reveals that these clusters are determined by the relation variable in the prompt.

It makes sense that this clustering would occur in intermediate layers of the model, but, inter-
estingly, it remains even in the final layer (just before the Unembedding Layer is applied). This
suggests that the model is not removing instrumentally, but not terminally, useful information
from the final token, even though it is ultimately unimportant for the final answer.

Layer 47 Fixed Name and Relation Clusters
Given that both name and relation are fixed here, it is not obvious why clusters should emerge

here.
Analysis of these clusters suggests that they are based on the name of the cousin in the story.

This is surprising because, for this dataset, the final question is only ever being asked about the
name of the brother.

Interestingly, when we put these questions into the GPT-3 playground we see that the weakest
models sometimes fail by answering with the name of the cousin instead of the brother. For the
larger GPT-3 models, the second largest logprobs are again ascribed to the cousin. This seems
to suggest a possible failure mode of these models, which was interesting to find through this
kind of analysis.

PCA Reconstruction Results
Following this experiment, the PCA reconstruction error experiment (Section 4.1.2) was per-

formed, using the ‘fixed name and relation’ dataset as the target dataset. The results of this can
be seen in 4.9.

Given the bias inherent in the Residual Stream of GPT-2 XL (Section 4.2.2), the general
downward trend of these curves down and then up for the final few layers is not surprising.
However, the relative position of the ‘fixed name’ and ‘fixed relation’ curves across layers is
meaningful. Initially the ‘fixed relation’ curve is higher for all three plots, before it eventually
drops below the ‘fixed name’ curve.

This suggests that in early layers the relation is more important in determining the acti-
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Figure 4.9: PCA reconstruction errors across layers of GPT-2 XL for the Residual Stream, Attention
Layer, and MLP Layer.
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vations, before the final name to be output becomes more important. This is similar to the
findings in the t-SNE plots (Figure 4.8) that the activations associated with the ‘fixed name’
dataset formed distinct clusters in earlier layers, before the ‘fixed relation’ data points also
formed clusters distinct from the ‘fixed name and relation’ data points.

4.6.3 Analysis

One broad takeaway from this investigation is that clusters in activation space can often be
semantically meaningful, since it was possible to describe each cluster accurately. However,
although some aspects of clustering could be predicted in advance (such as some clustering
based on the output), this investigation demonstrated that sometimes unpredictable clusters
may emerge (such as clusters based on the name of the matriarch and the cousin). This could
be used in different contexts to help predict whether models will fail in other contexts.

Another broad takeaway is that PCA reconstruction errors can be used to separate differ-
ent datasets, to make better comparisons between how models process datasets differently
throughout different layers. The consistency with the t-SNE plots indicated that they are both
measuring similar phenomena, which suggests it is reasonable to use the PCA reconstruction
errors as a more formal measurement of similarity than the t-SNE plots.

Finally, notice that the PCA reconstruction error plots for the Residual Stream, Attention
Layer output and MLP Layer output all demonstrate similar trends in general, specifically in the
relative error of the ‘fixed relation’ dataset compared to the ‘fixed name’ dataset. This suggests
that both the MLP and Attention Layers differentiate between these features in this instance.

4.7 Story Genres

Another extension of the finding that there are differences in the structure of the activations of
GPT-2 models on different data points (Sections 4.4, 4.5) is to consider other datasets which
are relatively unstructured. To investigate this, datasets of stories of different genres are con-
structed. Genre was chosen because it seems less obvious that a model would represent it than
other features such as language, yet given the relative proficiency of GPT-2 models at writing
stories one might expect the models to represent the genre in activation space.

Stories were generated using GPT-3.5 through the OpenAI API, generating 200 stories using
a prompt such as “Write a fantasy story. It should have 8 lines.”. To ensure there was variation
in these stories, a temperature of 1 was used. This was chosen empirically, as it demonstrated
sufficient variation whilst still producing coherent stories. Fantasy, sci-fi, and sports stories were
generated.

Note that because all of these stories were generated in the same way, one should expect
there to be other similarities or confounding variables besides just the genre and length of the
stories. It is worth noting this as a limitation of these datasets.

Figure 4.10 gives the results of creating t-SNE plots for the final activations in the Residual
Stream of GPT-2 small. The emergence of clusters based on story genre demonstrates that after
some intermediate layer GPT-2 small represents genre in activation space.

Given the clear clustering observed here, these datasets could provide useful for testing dif-
ferent methods of extracting feature vectors. We will return to this in Section 5.3.

40



Chapter 4. Empirical Investigation 4.8. GENRES VS. TASKS

200 100 0 100 200
t-SNE feature 0

300

200

100

0

100

200

300

t-S
NE

 fe
at

ur
e 

1

Layer Index = 0

Labels

sports
fantasy
scifi

30 20 10 0 10 20 30 40
t-SNE feature 0

20

10

0

10

20

t-S
NE

 fe
at

ur
e 

1

Layer Index = 5
Labels

sports
fantasy
scifi

30 20 10 0 10 20 30 40
t-SNE feature 0

20

10

0

10

20

30

t-S
NE

 fe
at

ur
e 

1

Layer Index = 12
Labels

sports
fantasy
scifi

Figure 4.10: t-SNE plots of Residual Stream activations of GPT-2 small, for sports, fantasy, and scifi
stories generated by GPT-3.5

4.8 Genres vs. Tasks

The analysis in Section 4.7 can be extended by adding different questions to the stories to
quantify the relative impact of different features on the activations of the GPT-2 models. To do
this, we will conduct analyses similar to Section 4.6.

4.8.1 Datasets

The datasets used to investigate this were created by using the fantasy, sci-fi and sports stories
from Section 4.7, and adding different questions to each of them. The rationale behind this
was to understand better how the task given to the language model changed its behaviour, and
how this differed from just changing the genres of the stories.

Q: What is the genre of this story? Answer in one word A:
Q: How likely is it that this story could occur? Answer in one word A:
Q: Continue this story. A:

Figure 4.11: Different questions added to the stories generated in Section 4.7. These will be referred
to as the genre question, likelihood question, and continuation question respectively.

4.8.2 Results

Figure 4.12 demonstrates t-SNE plots when varying both the genre of the story, as well as the
question asked after the story. The clear separation in clusters after the first layer suggests
that GPT-2 XL represents both the genre and the question in activation space after the first
transformer block.

To further understand the differences in how the models treat these two differences (the
difference in genre of story vs. the difference in question asked), the PCA reconstruction ex-
periment (section 4.1.2) can be performed, using the fantasy and continuation dataset as the
baseline. The results of this are demonstrated in Figure 4.13.
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Figure 4.12: t-SNE plots of Residual Stream activations of GPT-2 XL, for stories of different genres
followed by different questions.
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Figure 4.13: PCA reconstruction accuracies for GPT-2 XL, using fantasy stories followed by contin-
uation questions as the comparison to project onto.

4.8.3 Analysis

The higher reconstruction accuracies of sci-fi and sports continuation questions when compared
to fantasy stories with different questions indicates that the question is more important when
determining the computation performed by the model, when compared to the genre of the
stories.

Furthermore, it is interesting that (by the PCA reconstruction metric) the fantasy and genre
dataset is initially more similar to the fantasy and continuation dataset than the fantasy dataset
without any question, but is less similar by about layer 35 onwards.

One explanation for the initial similarity might be that there are superficial similarities be-
tween the fantasy and genre question dataset and the fantasy and continuation dataset (both
end with the same token, and have a question at the end). However, as the model starts
computing the output the computations being done are similar between the fantasy and contin-
uation dataset and the fantasy and no question dataset. This might be because, in the training
data for these models, tokens that are likely to follow from a fantasy story might involve simply
continuing the story.
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4.9 Similarity across prompts

A further extension of Section 4.7 is determining how changing the wording of semantically
similar questions impacts the activations of GPT-2 models.

4.9.1 Datasets

To investigate this, a similar experiment to 4.8 is performed, although the genre of the story
is kept fixed. Instead, the questions after the stories are varied, to determine how similarly
different questions are processed.

(Genre Question 1) Q: What is the genre of this story? Answer in one word A:
(Genre Question 2) Q: For this story, what is the genre? Answer in one word A:
(Genre Question 3) The genre of this story is:
(Genre Question 4) Q: What is the genre of this story? A:

Figure 4.14: Different questions used for the text in the story questions datasets. In this Section,
they are always added to fantasy stories.

Alongside the likelihood and continuation questions used in Section 4.8, variations of ques-
tions related to the genre of the model are investigated. The purpose of this is to investigate the
extent to which model activations are robust to small syntactic changes to the task, or whether
a small change in the phrasing of the task leads to completely different activations.

4.9.2 Results
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Figure 4.15: PCA reconstruction accuracies for GPT-2 Small and XL, using fantasy stories followed
by Genre Question 1 as the comparison to project onto. A single principal component is used.

4.9.3 Analysis

The PCA reconstruction accuracies (Section 4.1.2) for GPT-2 Small and GPT-2 XL, using Genre
Question 1 as the baseline dataset, are demonstrated in Figure 4.15.
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Looking first at GPT-2 Small, we can see that the Residual Stream activations corresponding
to Genre Question 2 are well approximated by the first principal component approximating the
activations of Genre Question 1. This is true across all layers of the model.

However, the Genre Question 3 dataset activations are less similar to Genre Question 1 than
both the Likelihood and Continuation Questions. Since Question 3 is the most syntactically
different, this may suggest that the model relies on superficial similarities to produce outputs,
as opposed to understanding deeper semantic similarities.

By contrast, the PCA reconstruction activations for the final layer of GPT-2 XL suggest that
the final activations associated with Genre Question 2 are the most similar to Genre Question
1, followed by Genre Questions 3 and 4, and finally by the completely different questions.
This aligns with how similar the questions are semantically: Genre Question 2 is identical to
Genre Question 1, just rephrased; Genre Questions 3 and 4 ask the same question, but without
specifying a single-word response is required; and the Continuation and Likelihood Questions
require entirely separate responses.

This suggests that at least in the domain of reading comprehension, GPT-2 XL has learned to
use similar activations across a wider range of prompts than GPT-2 Small has. This is similar
to work by Grosse et al. [57] which demonstrated that larger language models demonstrated
more abstract generalisation patterns than smaller ones across training examples. Figure 4.15
suggests a somewhat converse result: as models become larger, they may become better able
to recognise when superficially different tasks require similar computations.

4.10 Summary

Recall that in Section 3.3.1 we defined features as functions of the input space f : X → R.
Based on the empirical results in this Chapter, where we investigated whether text sharing
some human-interpretable feature (i.e. being part of the same dataset) leads to similarities in
the activations of GPT-2 models, we make the following claim.

Claim 1. In GPT-2 style transformers, there exist similarities across different inputs in how some
human-interpretable features are represented in activation space.

The evidence for this can be summarised as follows:

• Clustering was observed based on syntactic features of numeric datasets, despite mod-
els answering questions incorrectly (Section 4.4). This demonstrates that even for tasks
which are too difficult for models to perform, they are able to learn which features of the
task are most pertinent and represent these in the Residual Stream.

• Clustering in the Residual Stream was observed in terms of the output of a transformer in
multiple settings (Sections 4.3, 4.6). This confirms that features which are important for
the model to represent in order to produce outputs can lead to clustering in the Residual
Stream.

• Clustering was also observed in the final position of the Residual Stream for other features
of inputs, such as the relation of someone in a reading comprehension task (Section 4.6).
This is significant because in this example the relation is useful instrumentally for produc-
ing the output, even though the output cannot be predicted from the relation alone.
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• Clustering was observed based on the language of input text (Section 4.5). Significantly,
this feature is represented in the Residual Stream of these models whilst corresponding
to a less structured dataset than the previous examples.

• Clustering in the Residual Stream was observed both based on genres of stories (Section
4.7) and on the question posed after a story (Section 4.8). This is significant as an-
other example of a high-level feature that is represented in the same way across an entire
dataset.

Our findings corroborate empirical evidence that neural networks often learn to represent
human-interpretable features through specific regions of latent space activations, as was out-
lined in Section 3.3.

There are several other high-level takeaways from the empirical evidence collected in this
Chapter:

• For GPT-2 small, medium, large and XL, the activations of the residual stream are not
zero-centred at any layer. This bias in the Residual Stream activations is not explained
solely by the Embedding Layer. The Attention Layer outputs also exhibit notable bias
throughout the layers of all the GPT-2 models (Section 4.2).

• Different features are first represented by GPT-2 models in different layers. The extent
to which the presence of a feature impacts the activations of a model changes between
layers (Sections 4.6, 4.9).

• There is some limited evidence that larger models are better at recognising semantic
features of text than smaller models, and continue to represent the same feature found in
different contexts in the same way (Section 4.9).
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Chapter 5

Controlling Transformer Activations

In Chapter 4, we saw evidence that many kinds of high-level features of inputs were being
represented in the activations of transformer models. However, the empirical investigation did
not demonstrate how these features were being represented. This Chapter will begin with a
brief argument that features are represented as directions in activation space (Section 5.1).
This will provide the basis for creating new techniques for developing a group of methods for
extracting feature vectors from datasets (Section 5.2), alongside a brief empirical investigation
into their efficacy (Section 5.3). This will be followed by descriptions of how feature vectors
can be used to detect features in the processing of text (Section 5.5), as well as how to influence
the behaviour of language models (Section 5.4). The successful application of these methods
(Section 5.6) provides further empirical evidence for the argument that features are represented
as directions, as well as offering new methods of interacting with language models in their own
right.

5.1 Features as Directions in Activation Space

Currently, there does not exist a consensus in the literature on how features are represented in
transformer models. However, the following hypothesis is arguably the most widely accepted
answer. We will provide a brief justification for it in this Section.

Hypothesis 2. For GPT-2 style transformers, human-interpretable features are represented by di-
rections in the Residual Stream.

There is a mixture of both empirical and theoretical reasons we might expect this to be
true. Empirically, note that the majority of existing methods for manipulating LLM Activations
(Section 3.7) make this assumption, since they often involve training a linear probe on the
activations of LLMs [53] [54]. Training a linear probe to predict the existence of a feature f is
equivalent to learning some direction θ in activation space such that high cosine similarity with
θ leads to confident predictions that the input contains the feature f . Hence, the direction θ
can be interpreted as representing the feature f . The success of these methods suggests that at
least some features are represented as directions.

There are also theoretical reasons to expect transformers to represent features as directions
in activation space. Some of these are provided by Elhage et al. [34] in the case of neural
networks in general, but the argument is even stronger in GPT-2 style models because of the
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similarities between Attention Heads and linear maps. Recall that the output of an Attention
Head on a Residual Stream tensor x ∈ Rl×dmodel is given by

h(x)i =
∑
1≤j≤i

Ah
i,j(x) ∗Wh

OV (xj),

Since Wh
OV is a matrix, this means that if attention scores are treated as fixed then Attention

Heads are indeed linear maps. Although attention scores are non-linear, they only impact
the relative degree to which different tokens are attended, not how vectors are processed once
attended to. The structure of linear maps means that the most natural way to represent features
is as directions, because linear maps act consistently on vectors in the same direction (up to
scaling). Thus, we might also expect this to be true for Attention Heads.

Although the arguments for features being represented as directions MLP networks are sig-
nificantly weaker, since the same Residual Stream is used by both Attention Layers and MLP
Layers and we expect Attention Heads to require features to be represented as directions, we
might expect MLP Layers to in a sense be forced to also represent features as directions.

Although LayerNorm is applied to the residual stream before the Attention and MLP Layers,
it doesn’t complicate this argument because LayerNorm has minimal impact on the direction of
Residual Stream activations (Section 2.2.3).

Together, these arguments provide evidence that features will be represented as directions in
the Residual Stream of GPT-2 style language models. This assumption will be made throughout
the remainder of this thesis.

5.2 Feature Vectors from Datasets

Given the assumption that features are represented as directions in the Residual Stream, we
will look at methods for creating feature vectors: directions in Residual Stream space which
correspond to how language models represent certain features, at a given layer. Existing work
has already investigated several approaches to creating feature vectors. There are various ways
one might try to do this, such as training a linear probe on a supervised [54] or unsupervised
[53] task, or using the activations on specific prompts [52].

A similar but alternative approach is to modify the approach used by White [8], i.e. taking
the mean across all Residual Stream activations at a layer of the transformer across a dataset
which shares some feature.

5.2.1 Mean Activations

The most naive possible implementation of this approach is to simply take the mean of Resid-
ual Stream activations at some layer of the transformer model, x1, . . . ,xk. These vectors are
produced by running the model on some dataset, where inputs share some attribute f . For
example, they may all contain the word “woof”. Assuming that this feature is represented as a
single direction vf ∈ Rn across all these activations, one might describe the activations as

x1 = vf + e1,
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...
xk = vf + ek.

Assuming that the e vectors are independently distributed about the 0 ∈ Rn vector, the mean
of these vectors is given by

x = vf +
1

k

k∑
i=1

ei

which tends towards

x→ vf

as k →∞ (i.e., as we grow our dataset of uncorrelated examples with the attribute f).

5.2.2 Mean-Centring

A core assumption in 5.2.1 is that the e vectors for some dataset are independently distributed
about the origin. However, as demonstrated both in Cai et al. [40] and Section 4.2, the Residual
Stream activations are not uniformly distributed about the origin.

Hence, a more accurate description of the activations might be:

x1 = vf + vb + e1,

...
xk = vf + vb + ek.

Assuming that the e vectors are independently distributed about the 0 ∈ Rn vector, the mean
of these vectors is given by:

x = vf + vb +
1

k

k∑
i=1

ei

which tends towards:

x→ vf + vb

as k →∞ (i.e., as we grow our dataset of uncorrelated examples with the attribute f).
To isolate the vector vf without the bias vector vb, the activations can be mean-centred by

approximating the bias vector vb. For some set of Residual Stream activations at some layer
of the transformer model x′

1, . . . ,x
′
k′, where the x′

i have no common attribute (ideally drawn
from a large subset of the training dataset), the activations can be described as:

x′
1 = vb + e′1,

...
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x′
k′ = vb + e′k′ .

Assuming the e′ vectors are independently distributed about the 0 ∈ Rn vector, the mean of
these vectors is:

x′ = vb +
1

k′

k′∑
i=1

e′i

which tends towards:

x′ → vb.

The value x′ can then be used to mean-centre the activations. This allows the extraction of
the feature vector vf :

x− x′ ≈ vb + vf − vb = vf .

Figure 5.1: An example of mean-centring. If all activations are distributed about bias vector b,
and there exist some activations associated with loving text, then just taking the mean of the loving
activations will produce b+ f vector. The vector f can be isolated by subtracting the bias vector b.

5.2.3 Isolating Specific Features

The approach in Section 5.2.2 might suffer if our dataset has an undesired correlated feature,
besides the feature we are looking to extract. This mirrors the issue identified by White [8],
which demonstrated that in the CelebA dataset, there was an unexpected negative correlation
between the celebrity being male and smiling. However, the nuance of text could mean that this
issue is even more pronounced here, as it might be more difficult to identify the unwanted cor-
relates in text due to its complexity. This might mean that simply removing unwanted correlates
via resampling might not be possible in this context.

An alternative approach to remove unwanted correlations to isolate specific features is to use
the same idea as mean-centring, but subtracting a vector which accounts for both the bias and
the unwanted correlation.

49



5.3. FEATURE VECTOR EXPERIMENT Chapter 5. Controlling Transformer Activations

For example, suppose there exists a dataset of sports stories, and the corresponding activa-
tions can be described as

x1 = vsports + vstories + vb + e1
...

xk = vsports + vstories + vb + ek

with the mean given by:

x̄ ≈ vsports + vstories + vb

To extract just vsports, the activations corresponding to a broader range of stories can be
utilized:

x′′
1 = vstories + vb + e′′1
...

x′′
k′′ = vstories + vb + e′′k′′

with the mean being:

x̄′′ ≈ vstories + vb

Thus, the difference is:

x̄− x̄′′ ≈ vsports

This approach potentially allows for a clearer extraction of the sports feature.

5.3 Feature Vector Experiment

To ascertain empirically how effective these different methods of extracting feature vectors are,
we perform a simple experiment. We can unembed feature vectors associated with the different
story datasets from Section 4.7, and try to interpret these by finding the token embeddings with
the highest and lowest cosine similarity. This utilises the Method described in Section 4.1.4.

5.3.1 Mean Activations

Firstly, we may try to interpret simply the mean of all the Residual Stream activations corre-
sponding to either the fantasy, sports, or sci-fi datasets, at some layer of the model, as outlined
in Section 5.2.1. The results in layer 1 are given in Table 5.1.

These tokens do not seem easily interpretable, and do not seem to correspond to words
associated with the respective genres (although some for fantasy and sci-fi seem interpretable,
such as “magical”, “shining”, and perhaps “destroyed”).
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Fantasy Positive Fantasy Negative Sci-fi Positive Sci-fi Negative Sports Positive Sports Negative

mine \x12 rive \x12 ? rive
mad ? crumbling ? \x12 white
Ard ? ruined \x16 ? shining
ruined \x16 mine ? \x16 ruined
maiden \x02 Gat \x02 \x02 sand
shining ? destroyed ? \r gr
Garland ? Garland ? ? scra
bra \r shattered ? ? —
sand ? mag ? \x0c struck
grim InstoreAndOnline mad ? InstoreAndOnline right
crumbling ? charred \x0c ? ground
mag \x0c bra \x1a \x1a bree
magical \x1a destroy InstoreAndOnline ? tall
shattered rawdownload Drill ? ? night
ha ? war rawdownload ? pressed

Table 5.1: The top and bottom 15 tokens by inner product size, after averaging the Residual Stream
activations corresponding to the fantasy, sci-fi, or sports story activations in layer 1 of GPT-2 XL. ?
Refers to unicode characters.

Using the same method to produce feature vectors in later layers leads to a large degree
of similarity between the tokens produced by the different feature vectors. The results are
provided in Table 5.2.

This might be evidence that just taking the mean of Residual Stream activations to produce
the feature vector is not effective. The convergence to the same tokens across the different
examples might be explained by the presence of the bias in the Residual Stream activations
(Section 4.2).
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Fantasy Positive Fantasy Negative Sci-fi Positive Sci-fi Negative Sports Positive Sports Negative

unthinkable :// unthinkable :// unthinkable ://
enormous clips enormous clips enormous clips
massive wcsstore massive wcsstore massive wcsstore
immense : { immense : { immense : {
fateful ’/ fateful ’/ fateful ’/
vast addr vast addr vast addr
larger TEXTURE larger TEXTURE larger TEXTURE
formidable actionGroup colossal actionGroup obvious actionGroup
Rebellion 76561 Rebellion 76561 undeniable 76561
colossal office secretive office intense office
secretive Versions formidable { formidable Versions
obvious ? unimaginable 76561 Rebellion ${
ill ${ obvious isEnabled colossal ?
unimaginable isEnabled undeniable .( sole dates
intense .( intense ? unimaginable .(

Table 5.2: The top and bottom 15 tokens by inner product size, after averaging the Residual Stream
activations corresponding to the fantasy, sci-fi, or sports story activations in layer 30 of GPT-2 XL.
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5.3.2 Mean-Centring

If we instead produce the feature vector by mean-centring (Section 5.2.2) with a random subset
of the training dataset, we get the results as described in Table 5.3.

Fantasy Positive Fantasy Negative Sci-fi Positive Sci-fi Negative Sports Positive Sports Negative

Elven sit cosmic Plays swirling sit
warrior BUS interstellar USD clenched oS
jewel KK asteroid Opinion sto ?
enchantment ipes disemb KK pounding CM
realms USD dimensional ippi flames ETA
magical Reply Celestial oS longing iz
Celestial rep wasteland TA clasp Sit
Primordial Bye explorer votes grit tics
elf oS fireball yd gripping ancies
elemental National beings Reply trembling cop
enchanted Advertisement adventurer News euph tz
magically News teleportation Reuters fists nai
celestial Plays loneliness eret towering chool
warriors Reps Primordial ork loving Panel
Realm UP Artifact National roaring anti

Table 5.3: The top and bottom 15 tokens by inner product size, after mean-centring the Residual
Stream activations corresponding to the fantasy, sci-fi, and sports story datasets. Results are for layer
1 of GPT-2 XL.

The corresponding tokens immediately appear to be much more interpretable, and this re-
mains true for deeper layers: we no longer have degeneration to the same collection of words
for all genres, regardless of layer. This is demonstrated in Table 5.4.
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Fantasy Positive Fantasy Negative Sci-fi Positive Sci-fi Negative Sports Positive Sports Negative

enchanted itto humankind itto exhilar Anyway
mystical Anyway humanity ETF victorious Anyway
magical Tank mankind endors triumph ALSO
awakened endors millennia Tweet cheering Otherwise
sorce NYT interstellar Marketable triumphant unspecified
enchant zzi galactic nodd adrenaline uggest
runes referen civilization confir glory listings
mystic crap cosmic Asked trembling FY
enchantment pez awakened vc victory Asked
arcane Stuff starship referen chants zzi
treasures nodd teleportation Stuff crimson separately
awakening guys ensl nice celebration Basically
shaman Jerry sentient adder cheers Sources
goddess ETF destiny Asked clenched Basically
visions Asked enslaved pretty soaring downgrade

Table 5.4: The top and bottom 15 tokens by inner product size, after mean-centring the Residual
Stream activations corresponding to the fantasy, sci-fi, and sports story datasets. Results are for layer
29 of GPT-2 XL.

Overall, this provides evidence that mean-centring offers an improvement over simply taking
the mean of activations, as our theoretical analysis suggested.

5.3.3 Isolating Specific Features

Despite the general success of mean-centring in this example, notice also that the words asso-
ciated with sports have an emphasis on words we might associate with sports stories, and not
just sports themselves. This is likely because our dataset isn’t just about sports, but about sports
stories.

We can try to correct this by using the method of isolating specific feature vectors proposed
in Section 5.2.3, approximating the vstories as the mean of the fantasy, sci-fi, and sports Residual
Stream activations at any given layer.

This leads to the results we observe in Table 5.5.
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Highest Inner Product Tokens Lowest Inner Product Tokens

applause habitable
clinch sentient
cheering Cosmic
cheers colonization
spectators interstellar
scoreboard civilization
clin planetary
Wembley inhabited
announcer cosmic
scorer humankind
hoop planet
referee extrater
coaches quarantine
drib technologically
whistle Humanity

Table 5.5: The top and bottom 15 tokens by inner product size, after isolating the sports vector as
detailed in Section 5.2.3. Results are for layer 29 of GPT-2 XL.

5.3.4 Summary

This brief investigation provides some empirical evidence that features are represented as di-
rections in Residual Stream activations of GPT-2 models, since we were able to find directions
in activation space which represented a specific feature.

It also helps to confirm our theoretical prediction that mean-centring (Section 5.2.2) might
be a superior method for producing feature vectors than simply taking the mean of activations.
It also demonstrated that our hypothesised method for isolating specific features (Section 5.2.3)
works as desired. These insights will be useful when refining methods for Activation Additions
in the next Section.

5.4 Activation Additions

The methods used for extracting feature vectors in Section 5.2 can then be used to manipulate
the behaviour of language models. Following from the work of Turner et al. [52] and Li et al.
[54], this Section will propose a method of adding feature vectors to the activations of a single
layer of the model at inference time. The details of this algorithm can be found in Algorithm
1. This algorithm mirrors that used by Turner et al. [52], but incorporates the more general
methods of generating feature vectors developed in Section 5.2.

The function f here warrants further explanation. Given a feature vector v of shape R1×dmodel,
and Residual Stream activations xl of dimension R|S|×dmodel (where |S| is the number of tokens
in S), there are various ways that v could be added to xl. Examples include padding with
zero vectors to the left or right, or repeating the vector across all |S| positions of the Residual
Stream.

Note the number of hyper-parameters here: even once the model, prompt, feature and base-
line datasets have been determined, optimal values for the injection coefficient, target layer,
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Algorithm 1 Activation Additions
Input:

M = language model
p = user prompt
n = maximum output length
(xi)i≤N = feature dataset
(x′

i)i≤N ′ = baseline dataset
c = injection coefficient
l = target layer
f = feature vector extender

Output:
S = steered output text

Calculate the mean of the feature activations:
1: for 1 ≤ i ≤ N do
2: hi ←M .forward(xi).activations[l]
3: x̄← x̄ ∗ i−1

i
+ hi ∗ 1

i

4: end for

Calculate the mean of the baseline activations
5: for 1 ≤ i ≤ N ′ do
6: h′

i ←M .forward(x′
i).activations[l]

7: x̄′ ← x̄′ ∗ i−1
i

+ h′
i ∗ 1

i

8: end for

Calculate the steering vector
9: v← x̄− x̄′

Autoregressively produce output using the steering vector
10: for i ≤ n do
11: v′ = f(v, S)
12: xl ←M .forward(S).activations[l]
13: t←M .continueForward(cv′ + xl).text
14: S ← S.append(t)
15: end for
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and feature vector extender have to be found. Currently the best methods for doing this in-
volve using a grid search and keeping the feature vector extender fixed as padding to the right.

5.5 Feature Classification

Closely related to the problem of trying to control the output of LLMs is detecting the presence
of certain features during the forward pass of the model. One potential method for doing this
is outlined by [8] in the domain of generative image models, using the dot product of latent
activations with some feature direction to classify images. Given the method of extracting
feature vectors in arbitrary layers of an LLM in Section 5.2, a similar process can be used to
classify how LLMs process text prompts. Intuitively, it works on the basis that a large dot
product with a feature vector should indicate the presence of that feature, and smaller dot
products should indicate its absence. The details of this algorithm can be found in Algorithm 2.

Again, the function f warrants further explanation. It is in some ways the opposite of f in
Section 5.4, in that it specifies how to produce a vector gi ∈ R1×dmodel from the Residual Stream
activations of a single layer xl of dimension R|zi|×dmodel (where |zi| is the number of tokens in zi).
This could be done by taking the average across all token activations, or just taking the final
token activation. This reduction is necessary to compute the dot product with v.

Also, note the number of hyper-parameters here: once the model, prompt, feature and base-
line datasets have been determined, optimal values for the target layer, feature vector extender,
and threshold have to be found. Currently the best methods for doing this again involve using
a grid search.
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Algorithm 2 AtDotLLM
Input:

M = language model
(xi)i≤N = feature dataset
(x′

i)i≤N ′ = baseline dataset
(zi)i≤K = evaluation dataset
l = target layer
f = vector extractor
t = threshold

Output:
(ẑi)i≤K = feature prediction

1: (ẑi)i≤K ← 0

Calculate the mean of the feature activations
2: for 1 ≤ i ≤ N do
3: hi ←M .forward(xi).activations[l]
4: x̄← x̄ ∗ i−1

i
+ hi ∗ 1

i

5: end for

Calculate the mean of the baseline activations
6: for i = 1 to N ′ do
7: h′

i ←M .forward(x′
i).activations[l]

8: x̄′ ← x̄′ ∗ i−1
i

+ h′
i ∗ 1

i

9: end for

Calculate the feature vector
10: v← x̄− x̄′

Classify each input to be evaluated based on dot product with the feature vector
11: for 1 ≤ i ≤ K do
12: gi ← f(M .forward(zi).activations[l])
13: yi ← ⟨gi,v⟩
14: if yi ≥ t then
15: ẑi ← 1
16: else
17: ẑi ← 0
18: end if
19: end for
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5.6 Experiments

This section will present some initial examples of using the algorithms presented in Sections
5.4 and 5.5 to perform output manipulation and feature classification.

5.6.1 Activation Addition Examples

Some results from implementing Algorithm 1 are presented below. The text in the left-hand
columns represents unsteered model completions; the text in the right-hand columns results
from applying the Activation Addition Algorithm. The hyper-parameters used to produce each
example are provided, and the datasets are as described in Section 4.7. Right padding is used
as the feature vector extender for all examples.

Here is a story: A man walks into a bar.
He orders a drink. He takes his drink and
goes to the bathroom. When he comes out,
he is wearing a hat with an American flag
on it. The bartender says, “You know
what? I think you should take that off.”
The man says, “I’m not going to take that
off.” The bartender says, “Why not?”

Here is a story: A man who wants to be a
part of the world’s first time-traveling
football game has discovered that his plans
are being thwarted by the rules of an
ancient and mysterious game. The referee
is called upon to help, but his own
knowledge of the rules will likely leave him
stranded in an interstellar war between
two sides trying to find out what it is
they’re fighting about. humanity vs

Table 5.6: An example activation addition with the following hyper-parameters: Model = GPT-2
XL, coefficient = 180, layer = 25, feature dataset = scifi stories, baseline dataset = sports stories.

Yesterday, my son was out kicking a
football. Then, he went to the gym and I
saw him. He was on his way to work. He
had no shoes on and he was just playing
with his feet.” My son’s father said that
when I told him about the incident, he
didn’t know what to say or do. ”He said
‘I’m sorry,’ but it wasn’t something that I
could say,” says my dad.

Yesterday, my son was out kicking a
football. Then, he went to the lake and
was awakened by a strange creature. It
seemed to be a magical creature that
appeared in her home, and she found it
there with an enchanted enchantment on
it. She took it from the lake and told her
that if she could find some kind of magical
power in this enchanted land of the Lost
Princesses (or perhaps even better) she
could restore them back to life.

Table 5.7: An example activation addition with the following hyper-parameters: Model = GPT-
2 Small, coefficient = 60, layer = 6, feature dataset = fantasy stories, baseline dataset = sports
stories.
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A girl once had a goose egg. She was not
the only one to have it. And now, as we
enter the fourth quarter of the season, I’ve
got to say that my favorite moment in
football is when I’m on the field and
watching the Dallas Cowboys take on their
best team in seven years. It’s like a ghost
town where you can’t even get out of bed
until your phone rings

A girl once had a goose’s tail, but alas,
her wild side has wane. A little beauty
once brightened the sky with a maiden
shine, but now she withers in the
dark...and never shines again. A beautiful
maiden once longed to dance for her fair
queen, but now she is forgotten...and never
ever shines again. She’s all fair, I’ll sing
thee sweet sleep’s

Table 5.8: An example activation addition with the following hyper-parameters: Model = GPT-2
Small, coefficient = 150, layer = 6, feature dataset = shakespeare like text, baseline dataset =
training subset.
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5.6.2 Genre Classification Examples

The story datasets of varying genres (Section 4.7) are used here to develop a classifier based on
the genre of a piece of text, using Algorithm 2.

The feature dataset is a subset of the fantasy stories; the baseline dataset is a subset of the
training dataset; and the evaluation dataset consists of a separate subset of fantasy, sci-fi and
sports stories, and a subset of the training dataset.

Instead of setting a threshold, we vary this hyper-parameter to calculate ROC-AUC metrics.
Results from running the AtDotTwo algorithm for GPT-2 small and calculating the ROC-AUC
score for each layer on each of the Residual Stream activations, Attention Layer outputs, and
MLP Layer outputs, are shown in Figure 5.2. The best layer to use for classification is the output
of the 10th Attention Layer, as this has an AUC score of close to 0.95.

Figure 5.2: AUC scores for the AtDotTwo experiment at each layer of GPT-2 small, for Residual
Stream, mlp, and Attention Layers.

This can be repeated for GPT-2 XL. The results are shown in Figure 5.3. Note that on average
performing the experiment with the output of the Attention Layers leads to higher AUC scores,
but using the Residual Stream at intermediate layers has lower variance. This might represent
a general tradeoff that may exist across other models.

5.7 Summary

This Chapter described new methods for finding feature representations of GPT-2 style language
models and used these to propose alterations to methods for better understanding and control-
ling these models. Examples of successful applications of these algorithms provided further
empirical evidence that these models represent features as directions.
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Figure 5.3: AUC scores for the AtDotTwo experiment at each layer of GPT-2 XL, for Residual Stream
Activations, MLP Layer outputs, and Attention Layer outputs.
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Chapter 6

Evaluation

To properly judge the significance of the results provided throughout this thesis, serious consid-
eration must be taken to the limitations of this work. It is also worth considering its significance
to wider debates surrounding LLMs.

6.1 Limitations of Empirical Investigations

Although several methods were developed and applied to several different datasets and fea-
tures, the results are by no means exhaustive enough to claim an understanding of how features
are represented in GPT-2 style models. The first issue is that we only analyse a small handful of
features, and thus it is difficult to draw strong conclusions about when features of text will be
represented in the same way in language models.

The second is that although some of our methods provide evidence of certain kinds of rep-
resentations, they do not rule out other classes of representations. This is most clearly demon-
strated by our use of t-SNE plots: clustering here suggests that there is some kind of distance-
based clustering occurring, but it does not provide any evidence about the kind of clustering
besides this.

6.2 Feature Vector Creation

Recall the method used to create feature vectors highlighted in Section 5.2. Whilst feature
vectors created with this method were used to successfully perform activation steering (Section
5.6), there exist various other methods of forming feature vectors which have been used suc-
cessfully in other contexts [54] [53] [52]. It is worth considering the benefits and drawbacks
of using the method highlighted in 5.2, as opposed to these other methods.

The most similar method comes from Turner et al. [52], which uses the activations from
single inputs to produce feature vectors. This method is simpler and computationally cheaper
than those presented here, since it requires running inference on only a single pair of inputs
as opposed to an entire dataset. However, a more principled way of performing counterbal-
anced subtractions is presented here, and using a dataset should allow for the representation
of features which cannot be captured as easily in a single input.
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Li et al. [54] finds feature directions by training a linear probe on the individual Attention
Head values, finding the direction which best predicts whether the output has some desired
feature using gradient descent. This has two immediate advantages over our method, as looking
at individual Attention Heads allows for more fine-grained control of the feature vector, and
learning a probe means that unwanted correlates won’t impact the final feature vector. An
advantage of using the mean activations from a dataset is that it is not limited to the supervised
setting.

Burns et al. [53] provides another method for finding feature directions by training linear
probes in some unsupervised settings, through a method called Contrast-Consistent Search
(CCS). Although promising, it is not immediately clear how to apply CCS across all unsuper-
vised domains, since it replies on consistency properties about how a network might represent
truth.

There are some other general limitations with the methods provided here. One limitation is
that the method of mean-centring provided here relied on a somewhat incomplete picture of
the structure of the activations in GPT-2 style models, since it was assumed that mean-centring
implied the existence of a single cluster away from the origin. However, Cai et al. [40] found
that 2 clusters were sometimes necessary to describe the activations. This might suggest that a
different approach to mean-centring might be required to produce more useful feature vectors.

Another is that although all the methods implicitly assume Hypothesis 2, taking the mean of
the activations associated with some dataset requires some slightly stronger version of this, i.e.
that a feature is represented with the same direction across different inputs. Although Section
4 suggested this was true for the GPT-2 models studied here, if it doesn’t hold for larger models
then this method will cease to be effective.

6.3 Activation Additions Limitations

Even once a feature vector has been produced, there are some key limitations with the Activa-
tion Addition Algorithm (Algorithm 1).

One of these is the difficulty in evaluating the outputs of a language model, especially in
unsupervised contexts. Ideally, activation additions can be used to change some features of the
outputs, with as little detriment to the capabilities of the model as possible. Metrics should be
developed to measure whether the desired feature is more present in the outputs of the model;
as well as metrics to ensure the overall capabilities of the model are preserved. Turner et al.
[52] look at the increase in the frequency of certain desired words to detect the presence of
a desired feature in the output of the model, and use perplexity on training data as a proxy
measure for the model’s capabilities. Although useful, these are still imperfect proxies and
could be developed further.

Another difficulty is in optimising the hyper-parameters associated with activation additions,
such as the injection layer and the injection coefficient. Given proxy measures this can be done
automatically through hyper-parameter optimisation procedures such as grid search, but this
was not conducted in this thesis.

Another limitation is that features might be represented in multiple directions instead of just
one, and these features might need to be added with varying injection layers and injection
coefficients. The method as currently presented only allows for activation additions in a single
layer, in a single direction.
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These difficulties limited the applications of Activation Additions to a small number of exam-
ples in this project. This means that a systematic analysis of whether mean-centring can lead
to better performance than that exhibited by Turner et al. [52] was not performed, limiting the
significance of our results.

6.4 AtDotLLM Limitations

Although it hasn’t been developed as a method of classifying features of input text, many of the
ideas used by AtDotLLM (Algorithm 2) are used implicitly in other investigations in this area.
Furthermore, a rigorous analysis of this Algorithm on relevant benchmarks, such as Sentiment
Analysis, was not completed. It seems unlikely to surpass state-of-the-art algorithms in this
area, due to the strong performance of LLMs such as GPT-4 without further fine-tuning.

The significance of this Algorithm is thus best understood as complementing the other meth-
ods developed in Chapter 5, since it can be used to evaluate the quality of feature representa-
tions.

6.5 Implications of Feature Representation

In the wider discussion around language models, one point of intense discussion is the extent to
which language models are genuinely intelligent, in the sense that they understand the meaning
of the language they are processing (past just being able to generate convincing language). A
related question is the extent to which these models work by memorisation, which could involve
using very different heuristics for different inputs which superficially appear very similar; or
whether they are learning by forming robust generalisations. Some influential works such as
Bender et al. [10] have taken the position that despite the meaninglessness of LLM outputs,
“humans mistake LM output for meaningful text”.

Although speculative, Section 4 could be interpreted as providing some evidence against this
claim. It demonstrated that across a range of tasks, GPT-2 style models represented features of
datasets in the same way in the Residual Stream. Although a lot of the datasets we have looked
at often shared syntactic similarities, this does suggest that language models do in some sense
understand high-level features of text, and are not working entirely based on the memorisation
of training data.
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Conclusions and Future Work

There are several directions in which this project could be extended, which might be categorised
into three broad directions of future study: collecting further empirical evidence on the struc-
ture of language model activations; applying insights to detect distribution shift; and further
developing methods similar to Activation Additions.

7.1 Further Empirical Investigations

Chapter 4 could be extended to further understand the structure of language model activations
by addressing the shortcomings noted in 6.1.

• Further methods could be developed to investigate the geometric representation of differ-
ent datasets. Methods which make causal predictions based on the activations would be
particularly significant.

• A greater range of features could be investigated. It would be particularly useful to see in-
vestigations of features which are important for better controlling LLMs such as deception,
truthfulness, and sycophancy.

• More kinds of clustering algorithms could be used to study Residual Stream activations,
such as PCA and UMAP.

The empirical investigations could also be expanded to consider a wider range of models. In
particular, there could be further investigations into:

• GPT-2 style models with more parameters.

• Transformer models with different architectures. The recently open-sourced llama-2 mod-
els [58] represent a great candidate for this, although the hardware required to run these
models makes it substantially more difficult.

7.2 Detecting Distribution Shift

One aim of interpretability research is to understand when a network is about to use a funda-
mentally different kind of reasoning in order to produce an output compared to what we might
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have wanted or expected. This would be particularly useful for detecting unwanted behaviour
in the presence of distribution shift.

The AtDotLLM Algorithm described in Section 5.5 presents one possible approach to predict-
ing robust behaviour under distribution shift, since it could be used to detect the presence of
features in the computations of a model. This could be used to detect the representation of
desired features, as well as to check unwanted features are not being represented.

More robust versions of AtDotLLM could be developed to help with this by considering more
than just inner products. This could perhaps be through quantifying the extent of change in
MLP Layers that are induced by small changes in the input (since MLP Layers are not linear,
and so their outputs can vary greatly with a small amount of change to inputs).

7.3 Better Activation Additions

The Activation Addition algorithm described in Section 5.4 offers a potential improvement to an
exciting new method for interacting with language models. It has the potential to offer a much
cheaper alternative to fine-tuning, since it only requires performing inference on a handful
of inputs to form feature vectors (as opposed to performing further training to a model). It
could also be used to improve various safety-related features of models, such as by reducing
the likelihood of models outputting harmful text.

However, there are several areas of further development required before Activation Additions
can be applied to state-of-the-art language models. One area is in addressing the shortcomings
listed in Section 6.3, particularly with respect to conducting a systematic analysis of the modi-
fication to the construction of steering vectors proposed in this project.

Another area of development suggested by Li et al. [54] is to look not only for single di-
rections, but subspaces constituting multiple basis vectors. This might be more robust than
looking for single directions, as a feature may be represented across multiple directions instead
of just one. Indeed, this is found by Li et al. [54] when investigating truthfulness, where at least
two directions which correlate with truthfulness are found. It would be interesting to explore
activation additions using multiple feature vectors, instead of just one.

7.4 Conclusion

In conclusion, this thesis presents evidence that the activations of GPT-2 style language mod-
els are highly structured, and uses this evidence to improve upon new methods for controlling
language models by developing new ways to create feature vectors. These new perspectives on
understanding and controlling LLMs offer the potential to help address some of their shortcom-
ings in the future.
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Karina Nguyen, Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bow-
man. Studying large language model generalization with influence functions, 2023. URL
https://arxiv.org/abs/2308.03296. [Accessed: 29th August 2023]. pages 44

[58] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fer-
nandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman
Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor

74

https://aclanthology.org/D19-1448
https://aclanthology.org/D19-1448
https://arxiv.org/abs/1907.12009
https://arxiv.org/abs/1907.12009
https://arxiv.org/abs/1702.01417
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2212.03827
https://arxiv.org/abs/2212.03827
https://arxiv.org/abs/2306.03341
https://www.alignmentforum.org/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://www.alignmentforum.org/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2308.03296


BIBLIOGRAPHY BIBLIOGRAPHY

Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne
Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams,
Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie
Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023. URL
https://arxiv.org/abs/2307.09288. [Accessed: 3rd August 2023]. pages 66

75

https://arxiv.org/abs/2307.09288

	1 Introduction
	1.1 Understanding Language Models
	1.2 My Contributions
	1.3 Ethical Considerations

	2 Transformer Background
	2.1 GPT-2 Training and Inference
	2.2 GPT-2 Transformer Architecture
	2.2.1 Terminology
	2.2.2 Residual Stream
	2.2.3 Layer Norm
	2.2.4 Attention Layers
	2.2.5 MLP Layers


	3 Literature Review
	3.1 Transformers and Large Language Models
	3.2 Controlling Language Models
	3.3 Neural Network Interpretability
	3.3.1 Feature Representations
	3.3.2 Stucture of Feature Representations
	3.3.3 Using Feature Vectors in Latent Space

	3.4 Language Model Interpretability
	3.4.1 Feature Representations in Language Models

	3.5 Visualising Data
	3.5.1 t-SNE
	3.5.2 AttentionViz

	3.6 Language Model Activations
	3.6.1 Contextual Word Representations
	3.6.2 Evolution of Activations through Layers
	3.6.3 Describing GPT-2's Activations

	3.7 Manipulating LLM Activations
	3.7.1 Activation Steering
	3.7.2 Detecting and Improving Truthfulness

	3.8 Summary

	4 Empirical Investigation
	4.1 Methods
	4.1.1 Singular Value Distribution of Datasets
	4.1.2 PCA Reconstruction Errors
	4.1.3 t-SNE Plots
	4.1.4 Comparing Feature Vectors to Embedding Vectors

	4.2 Understanding Bias in Activations
	4.2.1 Does a bias exist?
	4.2.2 Implications for Investigations

	4.3 Model Output
	4.4 Numerical Datasets
	4.4.1 Datasets
	4.4.2 Results
	4.4.3 Analysis

	4.5 Language
	4.6 Reading Comprehension
	4.6.1 Datasets
	4.6.2 Results
	4.6.3 Analysis

	4.7 Story Genres
	4.8 Genres vs. Tasks
	4.8.1 Datasets
	4.8.2 Results
	4.8.3 Analysis

	4.9 Similarity across prompts
	4.9.1 Datasets
	4.9.2 Results
	4.9.3 Analysis

	4.10 Summary

	5 Controlling Transformer Activations
	5.1 Features as Directions in Activation Space
	5.2 Feature Vectors from Datasets
	5.2.1 Mean Activations
	5.2.2 Mean-Centring
	5.2.3 Isolating Specific Features

	5.3 Feature Vector Experiment
	5.3.1 Mean Activations
	5.3.2 Mean-Centring
	5.3.3 Isolating Specific Features
	5.3.4 Summary

	5.4 Activation Additions
	5.5 Feature Classification
	5.6 Experiments
	5.6.1 Activation Addition Examples
	5.6.2 Genre Classification Examples

	5.7 Summary

	6 Evaluation
	6.1 Limitations of Empirical Investigations
	6.2 Feature Vector Creation
	6.3 Activation Additions Limitations
	6.4 AtDotLLM Limitations
	6.5 Implications of Feature Representation

	7 Conclusions and Future Work
	7.1 Further Empirical Investigations
	7.2 Detecting Distribution Shift
	7.3 Better Activation Additions
	7.4 Conclusion


